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Elements
Work in G≤SΩ, typically Ω={1,...,n}.

Can represent elements of G on the 
computer, each permutation requires 
(roughly) n·log2(n) bits. Obvious 
multiplication/inverse.

n=105, 1GB memory: 5000 elements

As |SΩ|=n!  we cannot assume to store 
many elements.



Ground Rules
Instead represent/store subgroups by 
generators. At most log2(|U|) needed. 
Often in praxis <10.

We can store some extra elements for 
data structures.

Utilize (natural) group actions:

- Permutations on points

- Matrices on Vectors

- On group elements



Group Actions
We now assume that the group G acts 
on the set Ω from the right: g: ω ➝ ωg. (Here 
and in GAP always from the right.) The natural 
questions are to find:

ORBIT: ωG of ω∈Ω. (Length, Elements).

STAB: Stabilizer of ω∈Ω as subgroup of G.

TRANSPORTER: For ω,δ∈Ω find element 
g∈G such that ωg = δ (or confirm that no 
such an element exists).



Basic Orbit Algorithm
G acts on Ω. Orbit ωG 
of ω∈Ω consists of all 
images ωg for g∈G.

Each g is a product of 
generators (and 
inverses if G is infinite – 
assume included)

Take iteratively images 
of all points obtained 
under all generators.

Cost: |ωG|·#gens.

Input: G = ⟨g1,...,gm⟩, acting on 
Ω. Seed ω ∈ Ω.
Output: The orbit ωG.
begin
∆ := [ω];
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
fi;

od;
od;
return ∆;

end.



Modification: Transporters
Keeping track, we also 
get a Transversal of 
transporters  T [δ], such 
that ωT[δ]= δ.

These T[δ] are also are 
reps. for (right) cosets 
of StabG(ω) in G.

If ωg=δ and ωh= γ, 
then δx= γ for x=g -1h, 
solving the general 

begin
∆ := [ω];T:=[1];
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
Append T[δ]·gi to T;

fi;
od;

od;
return ∆;

end.



Schreier’s Lemma
If ωa=δ, δb=γ, ωc=γ, then a·b/c ∈ StabG(ω).

By SCHREIER’s lemma (→ Max's lecture 3) such 
elements, formed in all ways, generate StabG(ω):

Lemma:  G=〈g〉 finitely gen., S≤G with [G:S]<∞.
Suppose r={r1,…,rn} set of representatives for 
cosets of S in G, such that r1=1.
For h∈G write h:=ri for the chosen representative 
such that Sri =Sh. Let 

U:={rigj( rigj)−1 | ri ∈ r, gj ∈ g}
Then S=〈U〉. 
U is called a set of Schreier generators for S.



Modification: Stabilizer
The transversal gives 
coset representatives, 
the image of ω 
identifies cosets. 

Thus we can form 
Schreier generators.

At this point
S:=⟨S, T[δ]·gi /T[γ]⟩
just produces a 
generating set.

begin
∆ := [ω];T:=[1];S:=⟨1⟩;
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
Append T[δ]·gi to T;

else
S:=⟨S, T [δ]·gi /T [γ]⟩;

fi;
od;

od;
return ∆;

end.



Remarks on Performance
‣Need to store whole orbit – Available memory 

limits scope.

‣Store transversal T in factored form to save 
memory – Schreier vector. (Issue: balanced tree 
of low depth)

‣Cost of basic algorithm is dominated by test 
γ∈∆? to check for new points – Data structures.

‣There is a huge number of Schreier generators: 
Index of stabilizer ⨉ # group generators.

Usually many of them are redundant (or even 
trivial).



Schreier generators
The number of Schreier generators cannot be 
reduced in general, as in free groups (→ Max’s 
lectures) all are needed.

‣If there is a membership test in the partial 
stabilizer, test each new generator whether it is 
already in. (Still does not produce minimal 
sets!)

‣Let S={s1,s2,…,sn} be a generating set. A random 
subproduct  of S is a product x =∏i siϵi with the 
ϵi chosen independently by random from {0,1}.



Using Random Subproducts

Lemma: Let U=〈S〉 have subgroup chains of 
maximum length m≤log2(|U|). Then for every δ > 0 
there exists a constant c , such that c·m random 
subproducts generate U with probability 1−δ.

Theorem (BABAI, COOPERMAN, FINKELSTEIN, LUKS, 
SERESS, ’95):

There is an algorithm that computes for all δ > 0 in 
O (|S|log m) operations a set of size O (m) that 
generates U with probability 1−δ. 



Dictionaries
To test γ∈∆? (and to determine T [γ]) one can

‣Search linearly though ∆. (Orbit length n requires 
O (n2) element comparisons)

‣Keep a sorted copy of ∆. (needs < test,O (n log(n))

‣Determine index number for γ. (bit list, O (n) )

# Search in a hash table. (Hash key, almost O (n) )

In GAP, the Dictionary data type provides a 
uniform interface.
All nontrivial approaches require dedicated handling 
for each data type. (Many objects do not have 
unique representations!)



Variants: Stabilizer Order
If storage or time requirements are an issue the 
following variants might help if |G| is known:

‣Known orbit length, partial stabilizer order can 
give early termination. If we can calculate 
subgroup orders, can stop if the largest proper 
divisor of [G:S] is smaller than the orbit length.

‣Use of Birthday paradox to estimate orbit length – 
indicate that full stabilizer is known.

More often than not I end up re-implementing an 
orbit algorithm instead of using a generic default...



Consequences / Summary

The orbit algorithm and its variants let us solve

ORBIT, STABILIZER and TRANSPORTER as long 
as the orbit fits into memory.

By keeping track of the transversal, we write 
transversal elements as product of generators.

If we let G act on itself this allows for element 
lists, centralizer, normalizer in small groups.

To deal with larger cases, we need to use more 
group theory!



Variant: Spinning Algorithm

Take as Ω an algebraic structure, return the 
smallest substructure containing a seed.

Instead of an orbit, Δ is generating set for the 
closure. Map all elements of Δ under all 
group generators.

Add to Δ if image ɣ not in ⟨Δ⟩. (Group action 
preserves closure.)

Applications are e.g. normal closure, 
submodule.



Group Actions in GAP
In GAP group actions are done by the operations:

‣ Orbit, Orbits 
‣ Stabilizer, RepresentativeAction (Orbit/Stabilizer 

algorithm, sometimes backtrack, → lecture 2). 
‣ Action (Permutation image of action) and 

ActionHomomorphism (homomorphism to 
permutation image with image in symmetric group)

The arguments are in general are:

‣ A group G. (Will act by its GeneratorsOfGroup.) 
‣ A domain Ω (may be left out for Orbit, Stabilizer, but 

may improve performance). 
‣ Point ω, or list of point seeds for Orbits.



Action functions
The last argument is an action function 
actfun(ω,g):=ωg. This is a GAP function that 
implements the actual action. Some predefined 
actions are:
‣ OnPoints: action via ^. The default if not given. 
‣ OnTuples, OnSets: Lists or sets (i.e. sorted lists) of 

points. 
‣ OnSetsSets, OnSetsTuples, etc. 
‣ OnRight: right multiplication *. (e.g. on cosets) 
‣ OnLines: Projective action on vectors scaled to have 

first nonzero entry 1. 
‣ OnSubspacesByCanonicalBasis: Subspaces, given as list 

of RREF basis vectors. 
‣ Permuted: Permuting list entries. 



Optional Arguments
G may act via a homomorphism φ. (Say, a matrix group 
acting on enumerated vectors.) One can compute (in 
particular stabilizers) by giving two further list arguments:

gens A list of group generators,
imgs Images of these generators under φ.
Action Homomorphisms by default have codomain Sn. For 
large n this is inefficient. Append the string argument 
“surjective" to force the codomain equal to the image.

Action on cosets: Internal use of PositionCanonical 
(position of a standard equivalent object) allows:
ActionHomomorphism(G,RightTransversal(G,U),OnRight,   
”surjective"); to get the action on the cosets of U in G.

FactorCosetAction produces the same result.
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Blocks (AKA imprimitivity)
G acting (transitively) on Ω, a block system is a G-

invariant partition B of Ω, i.e. Ω = ∪B ∈ B  B but 
Bi∩Bj=∅. Thus G also acts on B.
Basic facts:
• All blocks have the same size.
• Trivial block systems: {Ω} and singleton sets. If 

only these two: primitive (otherwise imprimitive).
• b blocks of size a (n=a·b) iff G ≤ Sa ≀Sb. 
• Block systems are in bijection with subgroups 

StabG(ω) ≤ S ≤ G, S is stabilizer of block with ω. 
• If N⊲G the orbits of N form a block system.



Orbit with Normal Subgroup
If we know N⊲G, we can reduce:

‣Determine the orbit ∆ of ω under N.

‣Determine the orbit of the set ∆ under G.
The image of a single point determines whether 
an image is new, if so whole block image is new.
Cost is that of two smaller orbit algorithms:          
|∆|+|∆G| instead of |Ω|=|∆|·|∆G|.

‣For Stabilizer, take StabN(ω) and correct 
g∈StabG(∆) with n∈N: ωg= ωn, ωg/n= ω.

More in Bettina’s lecture.



Some Fundamental Tasks
For groups of permutations of degree up to 
a few 106, order easily 109  (so the orbit 
approach is infeasible), we want to solve:

ORDER: find the order of a group. (Implies 
element membership test.)

HOMOMORPHISM: decompose element 
as generator product. (Rewriting problem.)

We want to identify the group STRUCTURE, 
possibly find isomorphisms.

Also centralizers, normalizers if index is huge.



Use Subgroups
The principal idea now is to use subgroups/
cosets to factor the problem: As |G|=|U|·[G:U] 
this logarithmizes the problem.

Suitable subgroups: Point stabilizers 
U=StabG(ω), index at most |Ω|.

We can iterate this process for U.

Caveat: This works for any group with a natural 
action (matrix, automorphism, etc.) but often 
the problem is that [G:StabG(ω)] is not small.

Case in point: GLn(q), orbit length qn.



Stabilizer Chains
Let G ≤ SΩ. A list of points B=(β1,…,βm), βi ∈ Ω 
is called a base, if the identity is the only 
element g∈G such that βig=βi for all i.
The associated Stabilizer Chain is the sequence 

G=G(0) > G(1) > … > G(m)=〈1〉
defined by G(0):=G, G(i):=StabG(i−1)(βi). (Base 
guarantees that G(m)=〈1〉.)
Note that every g ∈ G is defined uniquely by 
base images β1g,…,βmg. (If g,h have same 
images, then g/h fixes base.)



Base Length
The base length m often is short (m ≤ log2(|G|)). 
In practice often m < 10.

We say that G is short-base if log|G|≤logc |Ω|

Bounds on base length have been studied in 
theory. If there is no short base the groups must 
be essentially An and relatives.

Same concept also possible for other kinds of 
groups and mixed actions, but then no good 
orbit length/base length estimates.



Data structure
We will store for a stabilizer chain:

• The base points (β1,…,βm). 

• Generators for all stabilizers G(i). (Union of all 
generators is strong generating set, as it permits 
reconstruction of the G(i).) Data structure thus 
is often called Base and Strong Generating Set.

• The orbit of βi under G(i−1) and an associated 
transversal for G(i) in G(i−1) (possibly as Schreier 
tree).

Storage cost thus is O(m ·|Ω|)



Consequences
• Group order: G = [G(0):G(1)]·[G(1):G(1)]·…

[G(m−1):G(m)] and thus G=∏i |βiG(i−1)|. 

•  Membership test in G for x ∈ SΩ: 

1.  Is ω = β1x ∈ β1G? If not, terminate. 

2.  If so, find transversal element t ∈ G(0) such 
that β1t=β1x. 

3.  Recursively test membership of x/t 
(stabilizing β1) in G(1).                           
(Or test x/y=( ) in last step.) 



More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…). 

• Enumerate G, equal distribution random 
elements. 

• Write g∈G as product in transversal elts. 

• Write g∈G as product in strong generators. 

• Write g∈G as product in generators of G. 
(Caveat: Long words) 

• Chosen base: Find stabilizers, transporter 
elements, for point tuples.



Schreier-Sims algorithm
SIMS' (1970) primary idea is to use a 
membership test in a partial stabilizer chain to 
reduce on the number of Schreier generators.
Basic structure is a partial stabilizer, i.e. a 
subgroup U ≤ G(i−1) given by generators and 
a base-point orbit βU with transversal 
elements (products of the generators of U).
The basic operation now is to pass an 
element x ∈ G(i−1) to this structure and to 
consider the base point image ω = βx.



Base point image ω = βx

• If ω∈βU, transversal element t∈U such that βt=ω. 
Pass y=x/t to the next lower partial stabilizer 
≤G(i). 

• If ω ∉ βU, add x to the generating set for U and 
extend the orbit of β.  All new Schreier generators 
y∈StabU(β) are passed to next partial stab. ≤G(i). 

• If no lower stabilizer was known, test whether the 
y was the identity. If so just return. (Successful 
membership test.) 

• Otherwise start new stabilizer for generator y and 
the next base point. (Pick a point moved by y). 



Homomorphisms
Embed permutation group G into direct product 
D=G×H. A homomorphism φ:G→H  can be 
represented as U≤D via 

U={(g,h) ∈ G×H | gφ=h}

Build a stabilizer chain for U using only the G-part.

Then decomposing g ∈ G using this chain 
produces an H-part that is g(φ−1).
Use this to evaluate arbitrary homomorphisms.



Kernels, Relators

Vice versa, let φ:H→ G and
U={(g,h) ∈ G×H | hφ=g}.

Form a stabilizer chain from generators of U, 
using the G-part.
The elements sifting through this chain 
(trivial g-part) are generators for ker φ.

If H is a free group, this yields a presentation 
for G.



Quandry

Deterministic Algorithm. Polynomial (in the 
degree n=|Ω|) runtime, but larger exponent 
(n3 if Schreier tree used).

The cause is the processing of all (mostly 
redundant) Schreier generators.

In practice not feasible if n is big ( >1000). 
For short base (log|G|≤logc n) we would like 
nearly linear timeO(n logc n), best possible



Wrong Results are Cheap
Use only some generators (random subset, better: 
random subproducts). Wrong data structure. But:

‣Error results in chain that claims to be too small - 
can detect if group order is known. 

‣Error analysis: A random element of G fails sifting in 
wrong chain with probability 1/2 - guarantee 
arbitrary small error probability. 

‣But we can verify that a chain is correct:

➡Combinatorial Verification (Sims, see SERESS' book) 

➡Presentation from stabilizer chain. Verify that group 
fulfills it. If too small, some relators fail to be. (Todd-
Coxeter-Schreier-Sims; or Recognition see lecture 3.)



Other Actions
Every finite group is a permutation group in 
suitable actions. (E.g. matrices on vectors.) 
Same methods apply there.

It is possible to use different actions (e.g. 
matrix group on subspaces and on vectors)

But: Orbit lengths can be unavoidably huge 
if there are no subgroups of small index.

Approach can be useful for well-behaved 
groups. Not a panacea, but part of matrix 
group recognition.



Backtrack

1 42 3

32 4

( )

(1,2,3) (1,3,2)
(1,4,2)

( )

(2,3,4)
(2,4,3)

13 4

( )

(2,3,4)

(2,4,3)

21 4

( )

(2,3,4)
(2,4,3)

31 2

( )

(2,3,4)
(2,4,3)

(2,3,4)() (2,4,3) (1,2)(3,4)(1,2,3) (1,2,4) (1,3,4)(1,3,2) (1,3)(2,4) (1,4)(2,3)(1,4,2) (1,4,3)

Exponential run time 
but good in practice.
E.g.: Centralizer, 
Normalizer, Set Stab., 
Intersection, 
Conjugating elts., ...

A stabilizer chain lets us consider the 
elements of G as leafs on a tree, branches 
corresponding to base point images.

Traverse the tree (depth first) by enumerating 
all possible base images. Find group elements 
with particular desired property.



Search Tree Pruning
It is crucial to reduce the search space down 
from |G| to a manageable size. Tools:
Algebraic structure: Solution set forms a 
subgroup (if stabilizer) or double coset (if 
transporter). E.g., all elements mapping ω to 
δ lie in StabG(ω)·g·StabG(δ) where ωg=δ.
The closure properties of the structure mean 
that the existence of some elements implies 
existence of others.
For simplicity, assume that we are aiming to 
find S= StabG(ω).



Double Coset Pruning
Assume we have found (or were given) some 
elements of S, generating subgroup U.  (Hard 
part is to prove there are no further ones.)

If g∈G, then either all or no elements of UgU 
will be in S. Sufficient to test one.

Criterion: Only test g if it is minimal in UgU. 
(lexicographically as lists of base images.)

Minimal in UgU is hard. Instead use minimal 
in Ug and in gU (necessary, not sufficient). 
Restrict choice of possible base images.



Problem-specific Pruning
The real power of backtrack comes with pruning 
methods that are specific to the problem to be 
solved. For example:

‣ An element centralizing a permutation must 
map cycles to cycles of the same length. Images 
of the first cycle point thus are limited. Once the 
image ωg of a first cycle point is chosen, the 
images of all other points in the cycle are given.

‣ An element normalizing a subgroup U must 
preserve the orbits of U. When also fixing the 
point ω, one must preserve the orbits of 
StabU(ω) (these are called orbitals).



Base Change
For efficiency , it is helpful to use a base that 
causes problem-specific prunings to apply early.

E.g. when centralizing an element, choose the 
first base point in a cycle of longest length (as the 
choice of one point image determines all others).

There used to be algorithms that performed a 
base change, i.e. computed a new stabilizer chain 
from an old one but with different base.

Modern, randomized, Schreier-Sims algorithms 
are so fast that is is usually easiest to just 
compute a new chain for the desired base.



Partition backtrack
Partition Backtrack (MCKAY, LEON, THEISSEN,...) 
is a convenient way to process the different 
kinds of pruning.

The algorithm maintains a partition (list of 
points) of Ω, indicating possible images of the 
base points. Tree root=(Ω), leaves=1point cells.

Selection of base images and pruning 
conditions are partition refinements, done by 
intersecting with particular partitions, such as 
(img, rest) or orbits of a subgroup.
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Towards Structure
A crucial tool on the way towards 
determining a permutation group's structure 
is the composition series.

Purposes include:

‣Decomposing the group 

‣As a Tool for other tasks 

‣Showcase of new class of structural methods 

‣Verification of stabilizer chains.



Homomorphisms
As a basic tool we want to be able for a 
permutation group G to either:

• Find a homomorphism φ on G with “smaller” 
image. Or:

• Prove that G is simple.

Natural Source of Homomorphisms: Group 
Actions, in particular from permutation action.

If G is intransitive on Ω: Action on Orbit

If G is transitive, imprimitive on Ω: Action on 
blocks. (Find block systems by starting with block 
seed, Union of images.)



Primitive Groups
Otherwise G is primitive. The O'NAN-SCOTT 
theorem describes the possible structure.

Key component: The Socle Soc(G), subgroup 
generated by all minimal normal subgroups.

Lemma   Soc(G) is direct product of minimal 
normal subgroups.

Proof:   Take M ≤ Soc(G), M⊲G maximal with 
this property. If M≠Soc(G) there exists N⊲G, 
minimally normal, N ≮M. Thus M∩N=〈1〉 and 
〈M,N〉=M×N ≤ Soc(G) is larger, Contradiction.



Socle of a Primitive Group
Let N⊲G minimal normal.

Remember: Orbits of N are blocks, thus in 
primitive G we have that N is transitive.

Nontrivial CG(N)⊲G will be normal, transitive.

Lemma   N≤SΩ transitive. Then C=CSΩ(N) is 
semiregular (i.e. for all ω∈Ω: StabC(ω)=1.)

Proof:   Let c ∈StabC(ω), δ∈Ω. Then there is 
g∈N such that δ = ωg = ω(cg) = ω(gc) = δc, 
thus c∈StabC(δ) for every δ. Thus c =1.



Socle Structure
Theorem   Let G primitive on Ω. S=Soc(G). Then either

• a) S is minimally normal, or 

• b) S=N×M with N,M⊲G minimal, N≅M nonabelian.

Proof:   If S is not minimally normal then S=N×M, 
M≤CG(N) and N≤CG(M). Both groups are transitive, 
semiregular, thus |N |=|Ω|=|M|, both nonabelian.

For n ∈ N exists unique m(n) ∈ M such that (1n)m(n)=1. 
Then φ:N→M, n→m(n) is isomorphism, as for k,n∈N: 

1(k·n·m(k)·m(n)) = 1k·m(k)·n·m(n)=((1k)m(k))n·m(n)=1n·m(n) =1    ☐

We thus have that Soc(G)≅T ×m with T simple. We say 
that Soc(G) is homogeneous of type T.



Abelian Socle
If S=Soc(G ) is abelian, it is an elementary 
abelian regular normal subgroup.

A point stabilizer U =StabG(ω) intersects trivially 
with S, thus G ≤ AGLn(p) is an affine group 
(linear+translation).

Submodules yield blocks, thus S is irreducible 
under conjugation by U (or G ).

(Finding S requires some work, algorithm exists.)

Vice versa irreducible action of a group U yields 
primitive group U⋉Cpn.



Nonabelian Socle
If the Socle S=Soc(G) ≅ T ×m is not abelian then 
CG(S)=〈1〉.

The action of G on S thus is faithful. Therefore 
(up to isomorphism)  G≤Aut(Soc(G)).

T is simple nonabelian, Aut(T ×m)=Aut(T ) ≀ Sm.

The action on the m direct factors of S is a 
homomorphism with nontrivial kernel.

More detailed description of the possible 
actions is given by the O’NAN-SCOTT Theorem. 
(Cf: ASCHBACHER’s theorem, → Derek's lectures)



G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine:  G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤ 
V=(T≀Sm).Out(T ) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in 
product action, A≤Sd primitive, not regular, B≤Ss  
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω 
isomorphic  transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem
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StabS(ω)={ (t,t,...,t) | t∈T }



G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:
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A≀B= (A×A×...×A) ⋊ B
A1

A2 A3

B
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Use in Classifications
Reduces to maximal subgroups of simple groups 
(Classification of Finite Simple Groups).

Information allows for explicit lists:

‣≦50 (SIMS, 1970s)

‣≦1000 nonaffine (DIXON & MORTIMER, 1989)

‣≦255 affine (THEISSEN, 1997)

‣≦1000 affine (RONEY-DOUGAL & UNGER, 2000)

‣≦38 solvable (EICK & HOEFLING, 2004)

‣≦4095 (RONEY-DOUGAL, QUICK, COUTTS, 2012)



Proof Sketch
[Dixon, Mortimer: Permutation Groups, GTM163]

Assume Socle S=T⨉...⨉T nonabelian.

S acts transitively. Let U=StabS(1). α:U →T1

‣If U trivial then twisted wreath. Degree≧606

‣If Uα≠T, then U=Uα⨉...⨉Uα, product action.

‣Otherwise U is subdirect product (thus direct 
product) of T ’s. Consider V=U∩ker α. If V trivial 
then diagonal type.

‣Otherwise product action of almost simple or 
diagonal type.



Finding the Socle
To find Soc(G) for a primitive group we use

Schreier's Conjecture:  T finite, simple, nonabelian. 
Then Out(T )=Aut(T )/T is solvable of derived length 
at most 3.  Proof by inspection of all cases (CFSG).

Lemma   Let U ≤ G be a 2-Sylow subgroup and 
N=〈Z(U )〉G (normal closure). Then S=N ′′′.

Proof:   As 2 | |T |, U has elements in each copy of T. 
So Z(U ) cannot move any T , thus Z(U ) ≤ Aut(T )×m. 
As 1 ≠ Z(U ), also T ×m≤〈Z(U )〉G ≤Aut(T )×m. But 
then the derived series of 〈Z(U )〉G  ends in T ×m.



Almost Simple Case
In the almost simple case m=1 and the action on 
the socle factors does not give any reduction.

However Out(T ) is small and solvable, so it is easy 
to construct a homomorphism with kernel T.

Remaining case is that of simple group T. In this 
case use constructive recognition (Effective 

isomorphism to natural copy, → Derek's lectures) 
to identify T as a simple group.

In many cases order/degree of a primitive group 
can establish simplicity or identify the 
isomorphism type if simple.



Composition Series
Given a permutation group G, we search for a 
homomorphism φ with smaller image if one 
exists. Recurse to Image and Kernel (if nontrivial).

Pulling the kernels back through previous 
homomorphisms gives a composition series of G.

We can combine presentations of the simple 
factors to obtain a presentation of G.

(Respectively, presentations of the images to 
obtain kernel generators.)



Combining Presentations
G

N F(a)

G/NF(b)

〈rj (a)〉j

〈sj (b)〉j

〈1〉

ni ai

 Ngibi gi

rj (a)1

sj (b) wj (n)
〈1〉

〈1〉

〈1〉

Let N⊲G with presentations 
N ≅ 〈a1,…,al | r1(a),r2(a),…〉

〈a1,…,al,b1,…,bm | r1(a),r2(a),…, sj (b)=wj (a), ai bj=vi(a)〉
is a presentation for G.

Proof: Relators define G with normal N, factor G/N.

G/N≅〈b1,…,bm|s1(b),s2(b),…〉

Let ni ∈ N image of ai in N.
gi ∈G, Ngi image of bi in G/N.

Find words vi,j , wj such that         
wj (n1,…,nl)=ni gj ∈N and           
wj (n1,…,nl)=sj (g1,…,gm)∈N. Then



Verification of Chain
The resulting presentation for G is based on 
the composition factors recognized.

Back to Random Schreier-Sims:
Composition series, with randomized 
stabilizer chains for G and factors.

If any randomized calculation failed, the 
resulting presentation will describe a smaller 
group. Detect this by evaluating the 
presentation on G. Otherwise we know |G|.

So we can certify a stabilizer chain for G.



Randomized Algorithms
A Monte Carlo algorithm can give wrong result 
(with selectable probability ϵ),
A Las Vegas algorithm, in addition tests for 
correctness, never returns a wrong result but 
failure (or unbounded run time) possible.

The randomized stabilizer chain calculation is 
Monte Carlo. Verification makes it Las Vegas. 
The only question is run time.

Randomized stabilizer chain is nearly linear 
O(n logc n). Can one sustain this?



Upgrade to Las Vegas
To maintain good run time for the verification, 
we need algorithms for

‣ Homomorphisms for decomposing to primitive 
factors and for splitting primitive factors.

‣ Constructive recognition of simple permutation 
groups.

‣ Write down a presentation for the simple 
factors. (Also used in recognition)

To maintain complexity, runtime for simple T 
must  be O( logc |T |). This means presentations 
must be of length O( logc |T |).



Short Presentations
Such short presentations are known for:

‣Cyclic Groups (trivial)

‣Sporadic Groups (trivial)

‣Alternating Groups (COXETER, MOSER 1972)

‣Lie Type of rank >1 (STEINBERG 1962, BABAI, 
GOODMAN, KANTOR, LUKS, PÁLFY, 1997)

‣PSL2(q) (TODD 1936)

‣Suzuki groups (SUZUKI 1964)

‣PSU3(q) (H., SERESS 2001)

Only the Ree groups 2G2(q) remain    ...



Permutation Group Recognition
The decomposition of a permutation 
representation is exactly the analog of matrix 
group recognition, decomposing with 
Aschbacher’s theorem.
As some reductions of matrix groups reduce to 
permutation groups, one can really consider this 
recognition as the same process working on 
permutation groups and matrix groups.

The recog package in GAP (NEUNHÖFFER, 
SERESS) does exactly this.
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Structural Computations
We typically don't just want to determine group 
order or composition structure, but higher level 
information such as conjugacy classes, subgroups, 
isomorphisms, etc.

The algorithms built for this over the last 15-20 
years use the Solvable Radical (or Trivial Fiing) 
method. (HOLT, CANNON, H.) Generalizing earlier 
algorithms for solvable groups this tries to do as 
much as possible by linear algebra, i.e. with 
elementary abelian normal subgroups.

The crucial ingredient is the Solvable Radical, 
R=Rad(G) the largest solvable normal subgroup.



Structure Analysis
Let R=Rad(G). Then G/R has no solvable normal 
subgroup. (So it has no nilpotent normal 
subgroups and thus a trivial Fitting subgroup.)

Every minimal normal subgroup of G/R is a direct 
product of simple groups. So is S */R = Soc(G/R).

The action of G/R on S*/R is faithful, thus (up to 
isomorphism) G/R ≤ Aut(S */R )=Aut(T1×…×Tk) 
with Ti simple, nonabelian.

If all T are isomorphic, then Aut(T×…×T ) 
=Aut(T )×…×Aut(T ):Sk =Aut(Ti )≀Sk .

Otherw. direct product of such wreath products.



Permutation Images

G/R < Aut(S */R )= ×i  Aut(Ti )≀Ski .

The Sk -part (permutation of socle factors) 
yields a homomorphism G/R→Sk with 
kernel Pker :=K ≥ S *. By (the proof of) 
SCHREIER's conjecture K/S * is solvable.

Action on S */R induces an action 
homomorphism G→Aut(S */R) that we can 
use to represent G/R as (permutation) group 
of moderate degree. Methods similar as with 
composition series.

G

⟨1⟩

Rad

S*

Pker



Using Solvable-Radical
A Solvable-Radical algorithm now first computes 
the result in G/R using its special structure.

Then choose a series of G-normal subgroups 

R=R0 > R1 > R2 > … > Rl =〈1〉.

with Ri /Ri+1 ≅ GF(pi )ni.

Step by step, lift the result from G/Ri to G/Ri+1. In 
each step use elementary abelian normal 
subgroup. Usually orbit calculations on this.

Work with subgroups, elements of G to represent 
factor groups.



R

1

... ... ......

S

≅T1 mod R ≅T2 mod R ≅Tm mod R

K

≅T1
n1⨉··· ⨉ Tm

nm

≦Out(T1)n1⨉··· ⨉ Out(Tm)nm

≦Sn1
⨉··· ⨉ Snm

R1

R2

≦Aut(T1)≀Sn1
⨉···  ⨉ Aut(Tm)≀Snm

≅GF( p1 )
n1

≅GF( p2 )
n2

G

R=Radical(G)   (solvable ⊲ )
S/R=Socle(G/R)
K=Kernel on factors of S/R

Structure summary



A PCGS for the Radical
A variant of Schreier-Sims (also by SIMS, 1990) for solvable 
groups finds a stabilizer chain and a PCGS compatible with 
such a series:
‣ Find g ∈ R in an elementary abelian normal N⊲G as 

suitable commutators/powers of generators. 
‣ Find N as normal closure under G (this will be the next Ri 

from the bottom) by adding conjugates of g. 
‣ Repeat for G/N if G is not reached. 

The elements g (+ conjugates) found form PCGS for R.
In each step we add one normalizing element to an existing 
group increasing the order by p.
Thus an existing stabilizer chain extends the orbit in exactly 
one layer by p, using normal subgroup orbit variant.
Decomposition with stabilizer chain yields PCGS exponents.



N-orbits
When computing group actions, one can 
use the the normal subgroup N=Ri /Ri+1 
whose orbits form blocks.

Instead of stabilizing a point ω under U, 
first stabilize the corresponding block 
Δ=ωN. Let A=StabU(Δ) be this stabilizer.

Then for every a ∈ A, there exists n ∈ N 
such that ωa=ωn, so the corrected element 
a /n ∈ StabU(ω) is in the same N-coset. 
Thus StabU(ω) is generated by StabN(ω) 
with corrections of generators of A.

StabN(δ)

StabU(Δ)

N StabU(δ)

U

〈1〉



Example: Conjugacy Classes
In step, N⊲G elementary abelian. Know classes of 
G/N. If g ∼ h in G then Ng ∼Nh in G/N. So each 
G/N-class is union of (images of) G-classes.

Let Nx be class representative with centralizer C/N.

Then c ∈ C acts on elements nx ∈ Nx by 
(nx)c=nc·xc   =nc [c,x -1]x , that is c :n ↦ nc ·[c,x−1]. 
This is an affine (linear+translation) action. Orbit/
Stabilizer yields classes within Nx and centralizers.

N-orbits correspond to translation by [m,x−1], 
translation vectors generate a subspace of N. The 
N-orbit blocks are cosets of this subspace.



Example: Complements
If N⊲G, a complement to N in G is a subgroup C such 
that G=NU and N∩U=〈1〉. (Semidirect product.)

If C is a complement, so is Cg ; in general there can be 
multiple conjugacy classes of complements to one N.

If two complements are conjugate under G, they are 
conjugate under N.

As C≅G/N, view complements as homomorphisms 
G→G with kernel N. Every g ∈ G is mapped to g ·ng 
with the cofactor ng ∈ N. Clearly sufficient to find these 
ng for generators of G modulo N.

Necessary+sufficient condition is that the elements 
g·ng fulfill a presentation for G/N in the generators Ng.



Equations
If N is elementary abelian then one can collect (→ 
Bettina's lectures) the equations into a G/N-part and 
an N-part. E.g., suppose G/N=〈Na,Nb〉 for a,b∈G and 
relator Na·Nb·Na. Now write this relators in a·na , b·nb

a·na ·b·nb·a·na = a·b·nab·nb·a·na = a·b ·a·naba·nba·na

Thus the group element (a·b ·a)−1∈N equals the 
(linearly written!) vector space element na·(Mba+1)+ 
nb·Ma where Mx is the matrix for the action on N 
induced by x. Compute the Mx, the ny are variables.

These equations for all relators yield a linear 
inhomogeneous system of equations. (The field is 
that of the prime whose order divides N.)



Cohomology
Each setting of values is a set of cofactors nx for the 
generators. Solutions correspond to complements.

Associated homogeneous system describes 
complements, if chosen generators for G/N already 
describe a complement - solutions are 1-cocycles Z1.

Conjugation by m ∈ N:g→ gm=m−1gm=g [g,m] gives 
cofactors ng=[g,m]. These generate subspace B1 ≤ Z1 

of 1-coboundaries, classes of complements 
correspond to the 1-cohomology group H1=Z1/B1.

We thus get representatives of the conjugacy classes 
of complements from one particular solution 
together with representatives of Z1 modulo B1.



General Case
For the general case, take a G-
normal series for N with 
elementary abelian factors.

In each step assume (in 
appropriate factor) that N ≥ M⊲G, 
M is elementary abelian and we 
found representatives Ci for the 
complements to N/M in G/M.

Then for each Ci find 
representatives for the 
complements to M in Ci and fuse 
these under action of NG(Ci).

G

N

M

C1 Ci Ck

...

...

1

As G/N=C, elements 
of G induce no outer 
automorphisms of Ci

XXXX  CG(Ci)



Subgroups
Complements are the key ingredient for 
determining all subgroups (up to conjugacy). 
Again assume N⊲G is elementary abelian.

Let U≤G. Then A=〈N,U〉≥N and B=N∩U≤N.

Assume that we know all candidates for A 
(as subgroups of G/N ) and for B (subspaces).

Also B⊲U and B⊲N (vector space), so B⊲A 
and U/B is complement to N/B in A/B.

Fuse under conjugation by NG(A)∩NG(B ).

In initial step G/Rad, take N=Soc(G/Rad) as 
direct product, for each B find candidates for 
A in NG(B ).

N U

A=NU

B=N∩U

〈1〉

G



Initial Step
In the initial step, F=G/Rad, take as normal 
subgroup N=Soc(F ).

This is a direct product of simple groups.

Subgroups of each direct factor from library (or 
older method, cyclic extension). Combine into 
subdirect products to get subgroups of N.

For each U≤N then consider A=NF(U ) and 
determine subgroups of A/NN(U ). 

Subgroups of Q then come from complements to 
NN(U )/U (may be non-solvable!) in the factor 
group A/U.



If you only want some ...

Often we don’t want all subgroups (or even can’t 
hope to store all of them). In this case it might be 
possible to adapt the subgroup lattice 
computation.

Consider how the reductions to factor groups, 
normal subgroups relate to your desired 
subgroups.

GAP’s functions provide some hooks for doing so, 
but in general one might need to adapt the code. 
This is easier than it may sound. Ask!


