
Permutation Groups 1:
Orbits and Stabilizers

Alexander Hulpke
Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://www.math.colostate.edu/~hulpke

LMS/EPSRC Course
Computational Group Theory
St Andrews 2013

http://www.hulpke.com
http://www.hulpke.com

Elements
Work in G≤SΩ, typically Ω={1,...,n}.

Can represent elements of G on the
computer, each permutation requires
(roughly) n·log2(n) bits. Obvious
multiplication/inverse.

n=105, 1GB memory: 5000 elements

As |SΩ|=n! we cannot assume to store
many elements.

Ground Rules
Instead represent/store subgroups by
generators. At most log2(|U|) needed.
Often in praxis <10.

We can store some extra elements for
data structures.

Utilize (natural) group actions:

- Permutations on points

- Matrices on Vectors

- On group elements

Group Actions
We now assume that the group G acts
on the set Ω from the right: g: ω ➝ ωg. (Here
and in GAP always from the right.) The natural
questions are to find:

ORBIT: ωG of ω∈Ω. (Length, Elements).

STAB: Stabilizer of ω∈Ω as subgroup of G.

TRANSPORTER: For ω,δ∈Ω find element
g∈G such that ωg = δ (or confirm that no
such an element exists).

Basic Orbit Algorithm
G acts on Ω. Orbit ωG
of ω∈Ω consists of all
images ωg for g∈G.

Each g is a product of
generators (and
inverses if G is infinite –
assume included)

Take iteratively images
of all points obtained
under all generators.

Cost: |ωG|·#gens.

Input: G = ⟨g1,...,gm⟩, acting on
Ω. Seed ω ∈ Ω.
Output: The orbit ωG.
begin
∆ := [ω];
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
fi;

od;
od;
return ∆;

end.

Modification: Transporters
Keeping track, we also
get a Transversal of
transporters T [δ], such
that ωT[δ]= δ.

These T[δ] are also are
reps. for (right) cosets
of StabG(ω) in G.

If ωg=δ and ωh= γ,
then δx= γ for x=g -1h,
solving the general

begin
∆ := [ω];T:=[1];
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
Append T[δ]·gi to T;

fi;
od;

od;
return ∆;

end.

Schreier’s Lemma
If ωa=δ, δb=γ, ωc=γ, then a·b/c ∈ StabG(ω).

By SCHREIER’s lemma (→ Max's lecture 3) such
elements, formed in all ways, generate StabG(ω):

Lemma: G=〈g〉 finitely gen., S≤G with [G:S]<∞.
Suppose r={r1,…,rn} set of representatives for
cosets of S in G, such that r1=1.
For h∈G write h:=ri for the chosen representative
such that Sri =Sh. Let

U:={rigj(rigj)−1 | ri ∈ r, gj ∈ g}
Then S=〈U〉.
U is called a set of Schreier generators for S.

Modification: Stabilizer
The transversal gives
coset representatives,
the image of ω
identifies cosets.

Thus we can form
Schreier generators.

At this point
S:=⟨S, T[δ]·gi /T[γ]⟩
just produces a
generating set.

begin
∆ := [ω];T:=[1];S:=⟨1⟩;
for δ ∈ ∆ do

for i ∈ {1,...,m} do
γ := δgi;
if γ∉ ∆ then

Append γ to ∆;
Append T[δ]·gi to T;

else
S:=⟨S, T [δ]·gi /T [γ]⟩;

fi;
od;

od;
return ∆;

end.

Remarks on Performance
‣Need to store whole orbit – Available memory

limits scope.

‣Store transversal T in factored form to save
memory – Schreier vector. (Issue: balanced tree
of low depth)

‣Cost of basic algorithm is dominated by test
γ∈∆? to check for new points – Data structures.

‣There is a huge number of Schreier generators:
Index of stabilizer ⨉ # group generators.

Usually many of them are redundant (or even
trivial).

Schreier generators
The number of Schreier generators cannot be
reduced in general, as in free groups (→ Max’s
lectures) all are needed.

‣If there is a membership test in the partial
stabilizer, test each new generator whether it is
already in. (Still does not produce minimal
sets!)

‣Let S={s1,s2,…,sn} be a generating set. A random
subproduct of S is a product x =∏i siϵi with the
ϵi chosen independently by random from {0,1}.

Using Random Subproducts

Lemma: Let U=〈S〉 have subgroup chains of
maximum length m≤log2(|U|). Then for every δ > 0
there exists a constant c , such that c·m random
subproducts generate U with probability 1−δ.

Theorem (BABAI, COOPERMAN, FINKELSTEIN, LUKS,
SERESS, ’95):

There is an algorithm that computes for all δ > 0 in
O (|S|log m) operations a set of size O (m) that
generates U with probability 1−δ.

Dictionaries
To test γ∈∆? (and to determine T [γ]) one can

‣Search linearly though ∆. (Orbit length n requires
O (n2) element comparisons)

‣Keep a sorted copy of ∆. (needs < test,O (n log(n))

‣Determine index number for γ. (bit list, O (n))

Search in a hash table. (Hash key, almost O (n))

In GAP, the Dictionary data type provides a
uniform interface.
All nontrivial approaches require dedicated handling
for each data type. (Many objects do not have
unique representations!)

Variants: Stabilizer Order
If storage or time requirements are an issue the
following variants might help if |G| is known:

‣Known orbit length, partial stabilizer order can
give early termination. If we can calculate
subgroup orders, can stop if the largest proper
divisor of [G:S] is smaller than the orbit length.

‣Use of Birthday paradox to estimate orbit length –
indicate that full stabilizer is known.

More often than not I end up re-implementing an
orbit algorithm instead of using a generic default...

Consequences / Summary

The orbit algorithm and its variants let us solve

ORBIT, STABILIZER and TRANSPORTER as long
as the orbit fits into memory.

By keeping track of the transversal, we write
transversal elements as product of generators.

If we let G act on itself this allows for element
lists, centralizer, normalizer in small groups.

To deal with larger cases, we need to use more
group theory!

Variant: Spinning Algorithm

Take as Ω an algebraic structure, return the
smallest substructure containing a seed.

Instead of an orbit, Δ is generating set for the
closure. Map all elements of Δ under all
group generators.

Add to Δ if image ɣ not in ⟨Δ⟩. (Group action
preserves closure.)

Applications are e.g. normal closure,
submodule.

Group Actions in GAP
In GAP group actions are done by the operations:

‣ Orbit, Orbits
‣ Stabilizer, RepresentativeAction (Orbit/Stabilizer

algorithm, sometimes backtrack, → lecture 2).
‣ Action (Permutation image of action) and

ActionHomomorphism (homomorphism to
permutation image with image in symmetric group)

The arguments are in general are:

‣ A group G. (Will act by its GeneratorsOfGroup.)
‣ A domain Ω (may be left out for Orbit, Stabilizer, but

may improve performance).
‣ Point ω, or list of point seeds for Orbits.

Action functions
The last argument is an action function
actfun(ω,g):=ωg. This is a GAP function that
implements the actual action. Some predefined
actions are:
‣ OnPoints: action via ^. The default if not given.
‣ OnTuples, OnSets: Lists or sets (i.e. sorted lists) of

points.
‣ OnSetsSets, OnSetsTuples, etc.
‣ OnRight: right multiplication *. (e.g. on cosets)
‣ OnLines: Projective action on vectors scaled to have

first nonzero entry 1.
‣ OnSubspacesByCanonicalBasis: Subspaces, given as list

of RREF basis vectors.
‣ Permuted: Permuting list entries.

Optional Arguments
G may act via a homomorphism φ. (Say, a matrix group
acting on enumerated vectors.) One can compute (in
particular stabilizers) by giving two further list arguments:

gens A list of group generators,
imgs Images of these generators under φ.
Action Homomorphisms by default have codomain Sn. For
large n this is inefficient. Append the string argument
“surjective" to force the codomain equal to the image.

Action on cosets: Internal use of PositionCanonical
(position of a standard equivalent object) allows:
ActionHomomorphism(G,RightTransversal(G,U),OnRight,
”surjective"); to get the action on the cosets of U in G.

FactorCosetAction produces the same result.

Permutation Groups 2:
Stabilizer Chains

Alexander Hulpke
Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://www.math.colostate.edu/~hulpke

LMS/EPSRC Course
Computational Group Theory
St Andrews 2013

http://www.hulpke.com
http://www.hulpke.com
http://www.hulpke.com

Blocks (AKA imprimitivity)
G acting (transitively) on Ω, a block system is a G-

invariant partition B of Ω, i.e. Ω = ∪B ∈ B B but
Bi∩Bj=∅. Thus G also acts on B.
Basic facts:
• All blocks have the same size.
• Trivial block systems: {Ω} and singleton sets. If

only these two: primitive (otherwise imprimitive).
• b blocks of size a (n=a·b) iff G ≤ Sa ≀Sb.
• Block systems are in bijection with subgroups

StabG(ω) ≤ S ≤ G, S is stabilizer of block with ω.
• If N⊲G the orbits of N form a block system.

Orbit with Normal Subgroup
If we know N⊲G, we can reduce:

‣Determine the orbit ∆ of ω under N.

‣Determine the orbit of the set ∆ under G.
The image of a single point determines whether
an image is new, if so whole block image is new.
Cost is that of two smaller orbit algorithms:
|∆|+|∆G| instead of |Ω|=|∆|·|∆G|.

‣For Stabilizer, take StabN(ω) and correct
g∈StabG(∆) with n∈N: ωg= ωn, ωg/n= ω.

More in Bettina’s lecture.

Some Fundamental Tasks
For groups of permutations of degree up to
a few 106, order easily 109 (so the orbit
approach is infeasible), we want to solve:

ORDER: find the order of a group. (Implies
element membership test.)

HOMOMORPHISM: decompose element
as generator product. (Rewriting problem.)

We want to identify the group STRUCTURE,
possibly find isomorphisms.

Also centralizers, normalizers if index is huge.

Use Subgroups
The principal idea now is to use subgroups/
cosets to factor the problem: As |G|=|U|·[G:U]
this logarithmizes the problem.

Suitable subgroups: Point stabilizers
U=StabG(ω), index at most |Ω|.

We can iterate this process for U.

Caveat: This works for any group with a natural
action (matrix, automorphism, etc.) but often
the problem is that [G:StabG(ω)] is not small.

Case in point: GLn(q), orbit length qn.

Stabilizer Chains
Let G ≤ SΩ. A list of points B=(β1,…,βm), βi ∈ Ω
is called a base, if the identity is the only
element g∈G such that βig=βi for all i.
The associated Stabilizer Chain is the sequence

G=G(0) > G(1) > … > G(m)=〈1〉
defined by G(0):=G, G(i):=StabG(i−1)(βi). (Base
guarantees that G(m)=〈1〉.)
Note that every g ∈ G is defined uniquely by
base images β1g,…,βmg. (If g,h have same
images, then g/h fixes base.)

Base Length
The base length m often is short (m ≤ log2(|G|)).
In practice often m < 10.

We say that G is short-base if log|G|≤logc |Ω|

Bounds on base length have been studied in
theory. If there is no short base the groups must
be essentially An and relatives.

Same concept also possible for other kinds of
groups and mixed actions, but then no good
orbit length/base length estimates.

Data structure
We will store for a stabilizer chain:

• The base points (β1,…,βm).

• Generators for all stabilizers G(i). (Union of all
generators is strong generating set, as it permits
reconstruction of the G(i).) Data structure thus
is often called Base and Strong Generating Set.

• The orbit of βi under G(i−1) and an associated
transversal for G(i) in G(i−1) (possibly as Schreier
tree).

Storage cost thus is O(m ·|Ω|)

Consequences
• Group order: G = [G(0):G(1)]·[G(1):G(1)]·…

[G(m−1):G(m)] and thus G=∏i |βiG(i−1)|.

• Membership test in G for x ∈ SΩ:

1. Is ω = β1x ∈ β1G? If not, terminate.

2. If so, find transversal element t ∈ G(0) such
that β1t=β1x.

3. Recursively test membership of x/t
(stabilizing β1) in G(1).
(Or test x/y=() in last step.)

More Consequences
Bijection g ∈ G ⇔ base image (β1g,β2g,…).

• Enumerate G, equal distribution random
elements.

• Write g∈G as product in transversal elts.

• Write g∈G as product in strong generators.

• Write g∈G as product in generators of G.
(Caveat: Long words)

• Chosen base: Find stabilizers, transporter
elements, for point tuples.

Schreier-Sims algorithm
SIMS' (1970) primary idea is to use a
membership test in a partial stabilizer chain to
reduce on the number of Schreier generators.
Basic structure is a partial stabilizer, i.e. a
subgroup U ≤ G(i−1) given by generators and
a base-point orbit βU with transversal
elements (products of the generators of U).
The basic operation now is to pass an
element x ∈ G(i−1) to this structure and to
consider the base point image ω = βx.

Base point image ω = βx

• If ω∈βU, transversal element t∈U such that βt=ω.
Pass y=x/t to the next lower partial stabilizer
≤G(i).

• If ω ∉ βU, add x to the generating set for U and
extend the orbit of β. All new Schreier generators
y∈StabU(β) are passed to next partial stab. ≤G(i).

• If no lower stabilizer was known, test whether the
y was the identity. If so just return. (Successful
membership test.)

• Otherwise start new stabilizer for generator y and
the next base point. (Pick a point moved by y).

Homomorphisms
Embed permutation group G into direct product
D=G×H. A homomorphism φ:G→H can be
represented as U≤D via

U={(g,h) ∈ G×H | gφ=h}

Build a stabilizer chain for U using only the G-part.

Then decomposing g ∈ G using this chain
produces an H-part that is g(φ−1).
Use this to evaluate arbitrary homomorphisms.

Kernels, Relators

Vice versa, let φ:H→ G and
U={(g,h) ∈ G×H | hφ=g}.

Form a stabilizer chain from generators of U,
using the G-part.
The elements sifting through this chain
(trivial g-part) are generators for ker φ.

If H is a free group, this yields a presentation
for G.

Quandry

Deterministic Algorithm. Polynomial (in the
degree n=|Ω|) runtime, but larger exponent
(n3 if Schreier tree used).

The cause is the processing of all (mostly
redundant) Schreier generators.

In practice not feasible if n is big (>1000).
For short base (log|G|≤logc n) we would like
nearly linear timeO(n logc n), best possible

Wrong Results are Cheap
Use only some generators (random subset, better:
random subproducts). Wrong data structure. But:

‣Error results in chain that claims to be too small -
can detect if group order is known.

‣Error analysis: A random element of G fails sifting in
wrong chain with probability 1/2 - guarantee
arbitrary small error probability.

‣But we can verify that a chain is correct:

➡Combinatorial Verification (Sims, see SERESS' book)

➡Presentation from stabilizer chain. Verify that group
fulfills it. If too small, some relators fail to be. (Todd-
Coxeter-Schreier-Sims; or Recognition see lecture 3.)

Other Actions
Every finite group is a permutation group in
suitable actions. (E.g. matrices on vectors.)
Same methods apply there.

It is possible to use different actions (e.g.
matrix group on subspaces and on vectors)

But: Orbit lengths can be unavoidably huge
if there are no subgroups of small index.

Approach can be useful for well-behaved
groups. Not a panacea, but part of matrix
group recognition.

Backtrack

1 42 3

32 4

()

(1,2,3) (1,3,2)
(1,4,2)

()

(2,3,4)
(2,4,3)

13 4

()

(2,3,4)

(2,4,3)

21 4

()

(2,3,4)
(2,4,3)

31 2

()

(2,3,4)
(2,4,3)

(2,3,4)() (2,4,3) (1,2)(3,4)(1,2,3) (1,2,4) (1,3,4)(1,3,2) (1,3)(2,4) (1,4)(2,3)(1,4,2) (1,4,3)

Exponential run time
but good in practice.
E.g.: Centralizer,
Normalizer, Set Stab.,
Intersection,
Conjugating elts., ...

A stabilizer chain lets us consider the
elements of G as leafs on a tree, branches
corresponding to base point images.

Traverse the tree (depth first) by enumerating
all possible base images. Find group elements
with particular desired property.

Search Tree Pruning
It is crucial to reduce the search space down
from |G| to a manageable size. Tools:
Algebraic structure: Solution set forms a
subgroup (if stabilizer) or double coset (if
transporter). E.g., all elements mapping ω to
δ lie in StabG(ω)·g·StabG(δ) where ωg=δ.
The closure properties of the structure mean
that the existence of some elements implies
existence of others.
For simplicity, assume that we are aiming to
find S= StabG(ω).

Double Coset Pruning
Assume we have found (or were given) some
elements of S, generating subgroup U. (Hard
part is to prove there are no further ones.)

If g∈G, then either all or no elements of UgU
will be in S. Sufficient to test one.

Criterion: Only test g if it is minimal in UgU.
(lexicographically as lists of base images.)

Minimal in UgU is hard. Instead use minimal
in Ug and in gU (necessary, not sufficient).
Restrict choice of possible base images.

Problem-specific Pruning
The real power of backtrack comes with pruning
methods that are specific to the problem to be
solved. For example:

‣ An element centralizing a permutation must
map cycles to cycles of the same length. Images
of the first cycle point thus are limited. Once the
image ωg of a first cycle point is chosen, the
images of all other points in the cycle are given.

‣ An element normalizing a subgroup U must
preserve the orbits of U. When also fixing the
point ω, one must preserve the orbits of
StabU(ω) (these are called orbitals).

Base Change
For efficiency , it is helpful to use a base that
causes problem-specific prunings to apply early.

E.g. when centralizing an element, choose the
first base point in a cycle of longest length (as the
choice of one point image determines all others).

There used to be algorithms that performed a
base change, i.e. computed a new stabilizer chain
from an old one but with different base.

Modern, randomized, Schreier-Sims algorithms
are so fast that is is usually easiest to just
compute a new chain for the desired base.

Partition backtrack
Partition Backtrack (MCKAY, LEON, THEISSEN,...)
is a convenient way to process the different
kinds of pruning.

The algorithm maintains a partition (list of
points) of Ω, indicating possible images of the
base points. Tree root=(Ω), leaves=1point cells.

Selection of base images and pruning
conditions are partition refinements, done by
intersecting with particular partitions, such as
(img, rest) or orbits of a subgroup.

Permutation Groups 3:
Composition Series

Alexander Hulpke
Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://www.math.colostate.edu/~hulpke

LMS/EPSRC Course
Computational Group Theory
St Andrews 2013

http://www.hulpke.com
http://www.hulpke.com

Towards Structure
A crucial tool on the way towards
determining a permutation group's structure
is the composition series.

Purposes include:

‣Decomposing the group

‣As a Tool for other tasks

‣Showcase of new class of structural methods

‣Verification of stabilizer chains.

Homomorphisms
As a basic tool we want to be able for a
permutation group G to either:

• Find a homomorphism φ on G with “smaller”
image. Or:

• Prove that G is simple.

Natural Source of Homomorphisms: Group
Actions, in particular from permutation action.

If G is intransitive on Ω: Action on Orbit

If G is transitive, imprimitive on Ω: Action on
blocks. (Find block systems by starting with block
seed, Union of images.)

Primitive Groups
Otherwise G is primitive. The O'NAN-SCOTT
theorem describes the possible structure.

Key component: The Socle Soc(G), subgroup
generated by all minimal normal subgroups.

Lemma Soc(G) is direct product of minimal
normal subgroups.

Proof: Take M ≤ Soc(G), M⊲G maximal with
this property. If M≠Soc(G) there exists N⊲G,
minimally normal, N ≮M. Thus M∩N=〈1〉 and
〈M,N〉=M×N ≤ Soc(G) is larger, Contradiction.

Socle of a Primitive Group
Let N⊲G minimal normal.

Remember: Orbits of N are blocks, thus in
primitive G we have that N is transitive.

Nontrivial CG(N)⊲G will be normal, transitive.

Lemma N≤SΩ transitive. Then C=CSΩ(N) is
semiregular (i.e. for all ω∈Ω: StabC(ω)=1.)

Proof: Let c ∈StabC(ω), δ∈Ω. Then there is
g∈N such that δ = ωg = ω(cg) = ω(gc) = δc,
thus c∈StabC(δ) for every δ. Thus c =1.

Socle Structure
Theorem Let G primitive on Ω. S=Soc(G). Then either

• a) S is minimally normal, or

• b) S=N×M with N,M⊲G minimal, N≅M nonabelian.

Proof: If S is not minimally normal then S=N×M,
M≤CG(N) and N≤CG(M). Both groups are transitive,
semiregular, thus |N |=|Ω|=|M|, both nonabelian.

For n ∈ N exists unique m(n) ∈ M such that (1n)m(n)=1.
Then φ:N→M, n→m(n) is isomorphism, as for k,n∈N:

1(k·n·m(k)·m(n)) = 1k·m(k)·n·m(n)=((1k)m(k))n·m(n)=1n·m(n) =1 ☐

We thus have that Soc(G)≅T ×m with T simple. We say
that Soc(G) is homogeneous of type T.

Abelian Socle
If S=Soc(G) is abelian, it is an elementary
abelian regular normal subgroup.

A point stabilizer U =StabG(ω) intersects trivially
with S, thus G ≤ AGLn(p) is an affine group
(linear+translation).

Submodules yield blocks, thus S is irreducible
under conjugation by U (or G).

(Finding S requires some work, algorithm exists.)

Vice versa irreducible action of a group U yields
primitive group U⋉Cpn.

Nonabelian Socle
If the Socle S=Soc(G) ≅ T ×m is not abelian then
CG(S)=〈1〉.

The action of G on S thus is faithful. Therefore
(up to isomorphism) G≤Aut(Soc(G)).

T is simple nonabelian, Aut(T ×m)=Aut(T) ≀ Sm.

The action on the m direct factors of S is a
homomorphism with nontrivial kernel.

More detailed description of the possible
actions is given by the O’NAN-SCOTT Theorem.
(Cf: ASCHBACHER’s theorem, → Derek's lectures)

G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine: G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤
V=(T≀Sm).Out(T) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in
product action, A≤Sd primitive, not regular, B≤Ss
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω
isomorphic transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem

G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine: G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤
V=(T≀Sm).Out(T) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in
product action, A≤Sd primitive, not regular, B≤Ss
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω
isomorphic transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem

G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine: G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤
V=(T≀Sm).Out(T) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in
product action, A≤Sd primitive, not regular, B≤Ss
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω
isomorphic transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem

G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine: G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤
V=(T≀Sm).Out(T) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in
product action, A≤Sd primitive, not regular, B≤Ss
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω
isomorphic transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem

StabS(ω)={ (t,t,...,t) | t∈T }

G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine: G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤
V=(T≀Sm).Out(T) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in
product action, A≤Sd primitive, not regular, B≤Ss
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω
isomorphic transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem

A≀B= (A×A×...×A) ⋊ B
A1

A2 A3

B

G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine: G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤
V=(T≀Sm).Out(T) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in
product action, A≤Sd primitive, not regular, B≤Ss
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω
isomorphic transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem

G primitive, |Ω|=n. Let S=Soc(G)= T ×m. Then:

Affine: G ≤ AGLn(q).

Almost simple: m =1 and H⊲G ≤ Aut(S).

Diagonal: m ≥ 2 and n=|T |m-1. Further, G ≤
V=(T≀Sm).Out(T) in diagonal action.

Product Action: m=rs with s >1. G≤W=A≀B in
product action, A≤Sd primitive, not regular, B≤Ss
transitive. Thus n =ds.

Twisted wreath: S regular and n=|T |m. Gω
isomorphic transitive subgroup of Sm. (n≥606.)

O’Nan-Scott Theorem

Use in Classifications
Reduces to maximal subgroups of simple groups
(Classification of Finite Simple Groups).

Information allows for explicit lists:

‣≦50 (SIMS, 1970s)

‣≦1000 nonaffine (DIXON & MORTIMER, 1989)

‣≦255 affine (THEISSEN, 1997)

‣≦1000 affine (RONEY-DOUGAL & UNGER, 2000)

‣≦38 solvable (EICK & HOEFLING, 2004)

‣≦4095 (RONEY-DOUGAL, QUICK, COUTTS, 2012)

Proof Sketch
[Dixon, Mortimer: Permutation Groups, GTM163]

Assume Socle S=T⨉...⨉T nonabelian.

S acts transitively. Let U=StabS(1). α:U →T1

‣If U trivial then twisted wreath. Degree≧606

‣If Uα≠T, then U=Uα⨉...⨉Uα, product action.

‣Otherwise U is subdirect product (thus direct
product) of T ’s. Consider V=U∩ker α. If V trivial
then diagonal type.

‣Otherwise product action of almost simple or
diagonal type.

Finding the Socle
To find Soc(G) for a primitive group we use

Schreier's Conjecture: T finite, simple, nonabelian.
Then Out(T)=Aut(T)/T is solvable of derived length
at most 3. Proof by inspection of all cases (CFSG).

Lemma Let U ≤ G be a 2-Sylow subgroup and
N=〈Z(U)〉G (normal closure). Then S=N ′′′.

Proof: As 2 | |T |, U has elements in each copy of T.
So Z(U) cannot move any T , thus Z(U) ≤ Aut(T)×m.
As 1 ≠ Z(U), also T ×m≤〈Z(U)〉G ≤Aut(T)×m. But
then the derived series of 〈Z(U)〉G ends in T ×m.

Almost Simple Case
In the almost simple case m=1 and the action on
the socle factors does not give any reduction.

However Out(T) is small and solvable, so it is easy
to construct a homomorphism with kernel T.

Remaining case is that of simple group T. In this
case use constructive recognition (Effective

isomorphism to natural copy, → Derek's lectures)
to identify T as a simple group.

In many cases order/degree of a primitive group
can establish simplicity or identify the
isomorphism type if simple.

Composition Series
Given a permutation group G, we search for a
homomorphism φ with smaller image if one
exists. Recurse to Image and Kernel (if nontrivial).

Pulling the kernels back through previous
homomorphisms gives a composition series of G.

We can combine presentations of the simple
factors to obtain a presentation of G.

(Respectively, presentations of the images to
obtain kernel generators.)

Combining Presentations
G

N F(a)

G/NF(b)

〈rj (a)〉j

〈sj (b)〉j

〈1〉

ni ai

 Ngibi gi

rj (a)1

sj (b) wj (n)
〈1〉

〈1〉

〈1〉

Let N⊲G with presentations
N ≅ 〈a1,…,al | r1(a),r2(a),…〉

〈a1,…,al,b1,…,bm | r1(a),r2(a),…, sj (b)=wj (a), ai bj=vi(a)〉
is a presentation for G.

Proof: Relators define G with normal N, factor G/N.

G/N≅〈b1,…,bm|s1(b),s2(b),…〉

Let ni ∈ N image of ai in N.
gi ∈G, Ngi image of bi in G/N.

Find words vi,j , wj such that
wj (n1,…,nl)=ni gj ∈N and
wj (n1,…,nl)=sj (g1,…,gm)∈N. Then

Verification of Chain
The resulting presentation for G is based on
the composition factors recognized.

Back to Random Schreier-Sims:
Composition series, with randomized
stabilizer chains for G and factors.

If any randomized calculation failed, the
resulting presentation will describe a smaller
group. Detect this by evaluating the
presentation on G. Otherwise we know |G|.

So we can certify a stabilizer chain for G.

Randomized Algorithms
A Monte Carlo algorithm can give wrong result
(with selectable probability ϵ),
A Las Vegas algorithm, in addition tests for
correctness, never returns a wrong result but
failure (or unbounded run time) possible.

The randomized stabilizer chain calculation is
Monte Carlo. Verification makes it Las Vegas.
The only question is run time.

Randomized stabilizer chain is nearly linear
O(n logc n). Can one sustain this?

Upgrade to Las Vegas
To maintain good run time for the verification,
we need algorithms for

‣ Homomorphisms for decomposing to primitive
factors and for splitting primitive factors.

‣ Constructive recognition of simple permutation
groups.

‣ Write down a presentation for the simple
factors. (Also used in recognition)

To maintain complexity, runtime for simple T
must be O(logc |T |). This means presentations
must be of length O(logc |T |).

Short Presentations
Such short presentations are known for:

‣Cyclic Groups (trivial)

‣Sporadic Groups (trivial)

‣Alternating Groups (COXETER, MOSER 1972)

‣Lie Type of rank >1 (STEINBERG 1962, BABAI,
GOODMAN, KANTOR, LUKS, PÁLFY, 1997)

‣PSL2(q) (TODD 1936)

‣Suzuki groups (SUZUKI 1964)

‣PSU3(q) (H., SERESS 2001)

Only the Ree groups 2G2(q) remain ...

Permutation Group Recognition
The decomposition of a permutation
representation is exactly the analog of matrix
group recognition, decomposing with
Aschbacher’s theorem.
As some reductions of matrix groups reduce to
permutation groups, one can really consider this
recognition as the same process working on
permutation groups and matrix groups.

The recog package in GAP (NEUNHÖFFER,
SERESS) does exactly this.

Permutation Groups 4:
The Solvable Radical/
Trivial Fitting Method

Alexander Hulpke
Department of Mathematics
Colorado State University

Fort Collins, CO, 80523, USA
http://www.math.colostate.edu/~hulpke

LMS/EPSRC Course
Computational Group Theory
St Andrews 2013

http://www.hulpke.com
http://www.hulpke.com

Structural Computations
We typically don't just want to determine group
order or composition structure, but higher level
information such as conjugacy classes, subgroups,
isomorphisms, etc.

The algorithms built for this over the last 15-20
years use the Solvable Radical (or Trivial Fiing)
method. (HOLT, CANNON, H.) Generalizing earlier
algorithms for solvable groups this tries to do as
much as possible by linear algebra, i.e. with
elementary abelian normal subgroups.

The crucial ingredient is the Solvable Radical,
R=Rad(G) the largest solvable normal subgroup.

Structure Analysis
Let R=Rad(G). Then G/R has no solvable normal
subgroup. (So it has no nilpotent normal
subgroups and thus a trivial Fitting subgroup.)

Every minimal normal subgroup of G/R is a direct
product of simple groups. So is S */R = Soc(G/R).

The action of G/R on S*/R is faithful, thus (up to
isomorphism) G/R ≤ Aut(S */R)=Aut(T1×…×Tk)
with Ti simple, nonabelian.

If all T are isomorphic, then Aut(T×…×T)
=Aut(T)×…×Aut(T):Sk =Aut(Ti)≀Sk .

Otherw. direct product of such wreath products.

Permutation Images

G/R < Aut(S */R)= ×i Aut(Ti)≀Ski .

The Sk -part (permutation of socle factors)
yields a homomorphism G/R→Sk with
kernel Pker :=K ≥ S *. By (the proof of)
SCHREIER's conjecture K/S * is solvable.

Action on S */R induces an action
homomorphism G→Aut(S */R) that we can
use to represent G/R as (permutation) group
of moderate degree. Methods similar as with
composition series.

G

⟨1⟩

Rad

S*

Pker

Using Solvable-Radical
A Solvable-Radical algorithm now first computes
the result in G/R using its special structure.

Then choose a series of G-normal subgroups

R=R0 > R1 > R2 > … > Rl =〈1〉.

with Ri /Ri+1 ≅ GF(pi)ni.

Step by step, lift the result from G/Ri to G/Ri+1. In
each step use elementary abelian normal
subgroup. Usually orbit calculations on this.

Work with subgroups, elements of G to represent
factor groups.

R

1

...

S

≅T1 mod R ≅T2 mod R ≅Tm mod R

K

≅T1
n1⨉··· ⨉ Tm

nm

≦Out(T1)n1⨉··· ⨉ Out(Tm)nm

≦Sn1
⨉··· ⨉ Snm

R1

R2

≦Aut(T1)≀Sn1
⨉··· ⨉ Aut(Tm)≀Snm

≅GF(p1)
n1

≅GF(p2)
n2

G

R=Radical(G) (solvable ⊲)
S/R=Socle(G/R)
K=Kernel on factors of S/R

Structure summary

A PCGS for the Radical
A variant of Schreier-Sims (also by SIMS, 1990) for solvable
groups finds a stabilizer chain and a PCGS compatible with
such a series:
‣ Find g ∈ R in an elementary abelian normal N⊲G as

suitable commutators/powers of generators.
‣ Find N as normal closure under G (this will be the next Ri

from the bottom) by adding conjugates of g.
‣ Repeat for G/N if G is not reached.

The elements g (+ conjugates) found form PCGS for R.
In each step we add one normalizing element to an existing
group increasing the order by p.
Thus an existing stabilizer chain extends the orbit in exactly
one layer by p, using normal subgroup orbit variant.
Decomposition with stabilizer chain yields PCGS exponents.

N-orbits
When computing group actions, one can
use the the normal subgroup N=Ri /Ri+1
whose orbits form blocks.

Instead of stabilizing a point ω under U,
first stabilize the corresponding block
Δ=ωN. Let A=StabU(Δ) be this stabilizer.

Then for every a ∈ A, there exists n ∈ N
such that ωa=ωn, so the corrected element
a /n ∈ StabU(ω) is in the same N-coset.
Thus StabU(ω) is generated by StabN(ω)
with corrections of generators of A.

StabN(δ)

StabU(Δ)

N StabU(δ)

U

〈1〉

Example: Conjugacy Classes
In step, N⊲G elementary abelian. Know classes of
G/N. If g ∼ h in G then Ng ∼Nh in G/N. So each
G/N-class is union of (images of) G-classes.

Let Nx be class representative with centralizer C/N.

Then c ∈ C acts on elements nx ∈ Nx by
(nx)c=nc·xc =nc [c,x -1]x , that is c :n ↦ nc ·[c,x−1].
This is an affine (linear+translation) action. Orbit/
Stabilizer yields classes within Nx and centralizers.

N-orbits correspond to translation by [m,x−1],
translation vectors generate a subspace of N. The
N-orbit blocks are cosets of this subspace.

Example: Complements
If N⊲G, a complement to N in G is a subgroup C such
that G=NU and N∩U=〈1〉. (Semidirect product.)

If C is a complement, so is Cg ; in general there can be
multiple conjugacy classes of complements to one N.

If two complements are conjugate under G, they are
conjugate under N.

As C≅G/N, view complements as homomorphisms
G→G with kernel N. Every g ∈ G is mapped to g ·ng
with the cofactor ng ∈ N. Clearly sufficient to find these
ng for generators of G modulo N.

Necessary+sufficient condition is that the elements
g·ng fulfill a presentation for G/N in the generators Ng.

Equations
If N is elementary abelian then one can collect (→
Bettina's lectures) the equations into a G/N-part and
an N-part. E.g., suppose G/N=〈Na,Nb〉 for a,b∈G and
relator Na·Nb·Na. Now write this relators in a·na , b·nb

a·na ·b·nb·a·na = a·b·nab·nb·a·na = a·b ·a·naba·nba·na

Thus the group element (a·b ·a)−1∈N equals the
(linearly written!) vector space element na·(Mba+1)+
nb·Ma where Mx is the matrix for the action on N
induced by x. Compute the Mx, the ny are variables.

These equations for all relators yield a linear
inhomogeneous system of equations. (The field is
that of the prime whose order divides N.)

Cohomology
Each setting of values is a set of cofactors nx for the
generators. Solutions correspond to complements.

Associated homogeneous system describes
complements, if chosen generators for G/N already
describe a complement - solutions are 1-cocycles Z1.

Conjugation by m ∈ N:g→ gm=m−1gm=g [g,m] gives
cofactors ng=[g,m]. These generate subspace B1 ≤ Z1

of 1-coboundaries, classes of complements
correspond to the 1-cohomology group H1=Z1/B1.

We thus get representatives of the conjugacy classes
of complements from one particular solution
together with representatives of Z1 modulo B1.

General Case
For the general case, take a G-
normal series for N with
elementary abelian factors.

In each step assume (in
appropriate factor) that N ≥ M⊲G,
M is elementary abelian and we
found representatives Ci for the
complements to N/M in G/M.

Then for each Ci find
representatives for the
complements to M in Ci and fuse
these under action of NG(Ci).

G

N

M

C1 Ci Ck

...

...

1

As G/N=C, elements
of G induce no outer
automorphisms of Ci

XXXX CG(Ci)

Subgroups
Complements are the key ingredient for
determining all subgroups (up to conjugacy).
Again assume N⊲G is elementary abelian.

Let U≤G. Then A=〈N,U〉≥N and B=N∩U≤N.

Assume that we know all candidates for A
(as subgroups of G/N) and for B (subspaces).

Also B⊲U and B⊲N (vector space), so B⊲A
and U/B is complement to N/B in A/B.

Fuse under conjugation by NG(A)∩NG(B).

In initial step G/Rad, take N=Soc(G/Rad) as
direct product, for each B find candidates for
A in NG(B).

N U

A=NU

B=N∩U

〈1〉

G

Initial Step
In the initial step, F=G/Rad, take as normal
subgroup N=Soc(F).

This is a direct product of simple groups.

Subgroups of each direct factor from library (or
older method, cyclic extension). Combine into
subdirect products to get subgroups of N.

For each U≤N then consider A=NF(U) and
determine subgroups of A/NN(U).

Subgroups of Q then come from complements to
NN(U)/U (may be non-solvable!) in the factor
group A/U.

If you only want some ...

Often we don’t want all subgroups (or even can’t
hope to store all of them). In this case it might be
possible to adapt the subgroup lattice
computation.

Consider how the reductions to factor groups,
normal subgroups relate to your desired
subgroups.

GAP’s functions provide some hooks for doing so,
but in general one might need to adapt the code.
This is easier than it may sound. Ask!

