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Finite index subgroups Theory

Let G := 〈X | R〉. There is a bijection:

{H ≤ G | [G : H] <∞}
∼=−→ {ϕ : G→ Sn | n ∈ N, ϕ a grp. hom.}

(image transitive)

H 7−→ trans. action on {Hg | g ∈ G} =: H\G

ϕ−1(StabSn(1)) ←− [ ϕ

which respects

H = K x for some x ∈ G ⇐⇒ actions on {Hg | g ∈ G} and
{Kg | g ∈ G} equivalent

The conjugacy classes of finite index subgroups

are in bijection with

the equivalence classes of actions on finitely many points.
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Finite index subgroups Coset tables

G is finitely generated, we describe finite actions by coset tables:

Example (A coset table)

Let G :=
〈

c,d | c2 = 1 = d3 = (cd)8 = [c,d ]4
〉

∼= L2(7) : 2 ∼= 〈(2,4)(3,5)(6,8), (1,2,3)(5,6,7)〉 ≤ S8.

Coset # c c−1 d d−1

1 1 1 2 3
2 4 4 3 1
3 5 5 1 2
4 2 2 4 4
5 3 3 6 7
6 8 8 7 5
7 7 7 5 6
8 6 6 8 8

Here, H =
〈
c,dcdc−1d−1〉.
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Todd-Coxeter coset enumeration

Todd-Coxeter
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Todd-Coxeter coset enumeration The idea

Let G := 〈X | R〉 and H = 〈h1, . . . ,hk 〉 < G.

Idea of coset enumeration
We construct the permutation action of G on the right cosets of H.
We give names to right cosets and make sure that

multiplication by elements of R fixes all cosets, and
multiplication of H by elements of H fixes this coset.

A “name” of a coset is a number and a word representing the coset.

We make up new names and draw conclusions as we go and hope. . .
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Todd-Coxeter coset enumeration A worked example

Let G :=
〈
a,b | a2,b3,abab

〉
and H := 〈ab〉.

# coset a a−1 b b−1

1 H

Events:

We start with an empty table like this.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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Let G :=
〈
a,b | a2,b3,abab

〉
and H := 〈ab〉.

# coset a a−1 b b−1

1 H 2
2 Ha 1

Events:
Def. 2 := Ha

We call the coset Ha number 2, a definition.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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〉
and H := 〈ab〉.

# coset a a−1 b b−1

1 H 2 2 3 2
2 Ha 1 1 1
3 Hb 4 1
4 Hba 3

Events:
Def. 2 := Ha
Ded. Haa = H
Ded. Hab = H
Def. 3 := Hb
Def. 4 := Hba

Next we define 3 := Hb and 4 := Hba.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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Deduce Hbaa = Hb.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
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Let G :=
〈
a,b | a2,b3,abab

〉
and H := 〈ab〉.

# coset a a−1 b b−1

1 H 2 2 3 2
2 Ha 1 1 1
3 Hb 4 4 5 1
4 Hba 3 3
5 Hbb 3

Events:
Def. 2 := Ha
Ded. Haa = H
Ded. Hab = H
Def. 3 := Hb
Def. 4 := Hba
Ded. Hbaa = Hb
Def. 5 := Hbb

Define 5 := Hbb.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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Let G :=
〈
a,b | a2,b3,abab

〉
and H := 〈ab〉.

# coset a a−1 b b−1

1 H 2 2 3 2
2 Ha 1 1 1
3 Hb 4 4 5 1
4 Hba 3 3
5 Hbb 1 3

Events:
[. . .]
Ded. Hab = H
Def. 3 := Hb
Def. 4 := Hba
Ded. Hbaa = Hb
Def. 5 := Hbb
Ded. Hbbb = H

Deduce Hbbb = H. Thus Hb−1 is both 2 and 5!

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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Let G :=
〈
a,b | a2,b3,abab

〉
and H := 〈ab〉.

# coset a a−1 b b−1

1 H 2 2 3 2
2 Ha 1 1 1 3
3 Hb 4 4 2 1
4 Hba 3 3
5 Hbb – – – –

Events:
[. . .]
Def. 3 := Hb
Def. 4 := Hba
Ded. Hbaa = Hb
Def. 5 := Hbb
Ded. Hbbb = H
Coi. 5 = 2

Conclude Ha = Hbb, replace 5 by 2: a coincidence.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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# coset a a−1 b b−1

1 H 2 2 3 2
2 Ha 1 1 1 3
3 Hb 4 4 2 1
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Events:
[. . .]
Def. 3 := Hb
Def. 4 := Hba
Ded. Hbaa = Hb
Def. 5 := Hbb
Ded. Hbbb = H
Coi. 5 = 2

Note Habab = H, a deduction that is already known.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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〉
and H := 〈ab〉.

# coset a a−1 b b−1

1 H 2 2 3 2
2 Ha 1 1 1 3
3 Hb 4 4 2 1
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5 Hbb – – – –

Events:
[. . .]
Def. 4 := Hba
Ded. Hbaa = Hb
Def. 5 := Hbb
Ded. Hbbb = H
Coi. 5 = 2
Ded. Hbab = Ha

Use Ha · abab = Ha, deduce Hbab = Ha.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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Conclude Hba = Hb, replace 4 by 3. Table is closed.

Indeed, we have found a permutation representation on 3 points. The
subgroup H fixes the first point.

Since we have checked all relations we have found a group
homomorphism from G to S3.
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Todd-Coxeter coset enumeration GAP session

http://tinyurl.com/MNGAPsess/GAP_FP_4.g
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Todd-Coxeter coset enumeration Strategies

We had a lot of choice as to what we define next.

We sort out coincidences before we define new cosets.
Direct deductions are preferable to random definitions.
A definition algorithm is called a strategy.

There are many strategies, for example:
1 HLT (Haselgrove-Leech-Trotter): define cosets to scan relators
2 Felsch: define cosets to fill rows of the table

However:

No strategy is always optimal.

Runtime and memory usage vary enormously with the strategy.
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Todd-Coxeter coset enumeration Properties of the algorithm, termination

The Todd-Coxeter algorithm has the following features:

If it terminates, it proves that [G : H] is finite and it constructs the
permutation action of G on the right cosets of H.

Theorem (Termination of the Todd-Coxeter procedure)

Assume [G : H] <∞ and a deterministic strategy with:
all entries will eventually be filled,
all relators will eventually be scanned from each coset, and
all subgroup generators will eventually be scanned from coset #1.

Then the Todd-Coxeter procedure terminates eventually.

No limit on memory and runtime is known a priori.
A completed coset enumeration with H = {1} proves G to be finite
and determines the order.
An unfinished coset enumeration proves nothing whatsoever.
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all subgroup generators will eventually be scanned from coset #1.

Then the Todd-Coxeter procedure terminates eventually.

No limit on memory and runtime is known a priori.

A completed coset enumeration with H = {1} proves G to be finite
and determines the order.
An unfinished coset enumeration proves nothing whatsoever.
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Enumerating low index subgroups

Low index
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Enumerating low index subgroups The idea

Let G := 〈X | R〉.

Idea of the low index procedure
We want to construct a permutation action of G on k points. This is
equivalent to the action on the cosets of a subgroup H of index k .
We start with an empty coset table with k rows and

try out all possibilities to fill it in (finite!),
check that all elements of R act trivially,
use backtrack search,
determine the point stabiliser H in each case, and
remove equivalent actions (conjugate subgroups H).

=⇒ This very quickly becomes impractical for larger k .
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Enumerating low index subgroups A worked example

Low index: an example

Let G :=
〈
a,b | a2,b3,abab

〉
and k = 3.

# a b b−1

1
2
3

Guesses:

We start with an empty table like this.

For this solution H = 〈a〉.

To go on, we would change the assumption 1a = 1 to 1a = 2 (wlog)
and continue the search.
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Let G :=
〈
a,b | a2,b3,abab

〉
and k = 3.

# a b b−1

1 1
2
3

Guesses:
1a = 1

We first assume 1a = 1. Nothing follows.

For this solution H = 〈a〉.

To go on, we would change the assumption 1a = 1 to 1a = 2 (wlog)
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# a b b−1

1 1 2
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3

Guesses:
1a = 1
1b = 2 (wlog)

1b = 1 would be intransitive, so (wlog) 1b = 2.
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To go on, we would change the assumption 1a = 1 to 1a = 2 (wlog)
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〉
and k = 3.

# a b b−1

1 1 2 2
2 1 1
3

Guesses:
1a = 1
1b = 2 (wlog)
2b = 1

From 2b = 1 would follow 1bbb = 2, a contradiction.

For this solution H = 〈a〉.

To go on, we would change the assumption 1a = 1 to 1a = 2 (wlog)
and continue the search.
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Let G :=
〈
a,b | a2,b3,abab

〉
and k = 3.

# a b b−1

1 1 2
2 3 1
3 2

Guesses:
1a = 1
1b = 2 (wlog)

So we backtrack and conclude 2b = 3.

For this solution H = 〈a〉.

To go on, we would change the assumption 1a = 1 to 1a = 2 (wlog)
and continue the search.
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# a b b−1
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Guesses:
1a = 1
1b = 2 (wlog)
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For this solution H = 〈a〉.

To go on, we would change the assumption 1a = 1 to 1a = 2 (wlog)
and continue the search.
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Enumerating low index subgroups GAP session

http://tinyurl.com/MNGAPsess/GAP_FP_5.g
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Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows. If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,
and discards those which are not lexicographically least among
the renumbered ones, this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14



Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows. If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,
and discards those which are not lexicographically least among
the renumbered ones, this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14



Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows. If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,
and discards those which are not lexicographically least among
the renumbered ones, this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14



Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows.

If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,
and discards those which are not lexicographically least among
the renumbered ones, this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14



Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows. If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,
and discards those which are not lexicographically least among
the renumbered ones, this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14



Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows. If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,

and discards those which are not lexicographically least among
the renumbered ones, this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14



Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows. If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,
and discards those which are not lexicographically least among
the renumbered ones,

this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14



Enumerating low index subgroups Removing duplicates

Definition (Standardised coset table)
A coset table is called standardised, if reading it row by row and left to
right finds new numbers in order 2, 3, . . ., n.

# a b b−1

1 1 2 3
2 3 3 1
3 2 1 2

is standardised,

# a b b−1

1 1 3 2
2 3 1 3
3 2 2 1

is not.

Proposition

For G := 〈X | R〉, the set of subgroups of index n is in bijection with the
set of standardised coset tables with n rows. If [G : H] = n, the
conjugates {Hx | x ∈ G} are the stabilisers of the points {Hx | x ∈ G}.

Therefore, the low index procedure
only enumerates standardised coset tables,
and discards those which are not lexicographically least among
the renumbered ones, this gets rid of duplicates.

Max Neunhöffer (University of St Andrews) Finitely presented groups 2 30 July 2013 14 / 14


	Finite index subgroups
	Theory
	Coset tables

	Todd-Coxeter coset enumeration
	The idea
	A worked example
	GAP session
	Strategies
	Properties of the algorithm, termination

	Enumerating low index subgroups
	The idea
	A worked example
	GAP session
	Removing duplicates


