Finitely presented groups 3

Max Neunhöffer

LMS Short Course on Computational Group Theory 29 July – 2 August 2013

Let $G = \langle X | R \rangle$, so that $G \cong F/N$ where F = F(X) and $N = \langle \langle R \rangle \rangle$.

Let $G = \langle X | R \rangle$, so that $G \cong F/N$ where F = F(X) and $N = \langle \langle R \rangle \rangle$. We denote the natural map $\overline{}: F \to G$ by bars. Let $G = \langle X | R \rangle$, so that $G \cong F/N$ where F = F(X) and $N = \langle \langle R \rangle \rangle$. We denote the natural map⁻: $F \to G$ by bars. Let H = E/N < G and let $T \subseteq F$ be a right transversal of E in F:

$$F = \bigcup_{t \in T} Et$$
 and thus $G = \bigcup_{t \in T} H\overline{t}$

We assume $1_F \in T$ and represent elements of *F* by reduced words.

Let $G = \langle X | R \rangle$, so that $G \cong F/N$ where F = F(X) and $N = \langle \langle R \rangle \rangle$. We denote the natural map $\overline{}: F \to G$ by bars. Let H = E/N < G and let $T \subseteq F$ be a right transversal of E in F:

$$F = \bigcup_{t \in T} Et$$
 and thus $G = \bigcup_{t \in T} H\overline{t}$

We assume $1_F \in T$ and represent elements of *F* by reduced words. For a $w \in F$ define $\underline{w} := t \in T$ with $w \in Et$.

Finite index subgroups

Let $G = \langle X | R \rangle$, so that $G \cong F/N$ where F = F(X) and $N = \langle \langle R \rangle \rangle$. We denote the natural map $\overline{}: F \to G$ by bars. Let H = E/N < G and let $T \subseteq F$ be a right transversal of E in F:

$$F = \bigcup_{t \in T} Et$$
 and thus $G = \bigcup_{t \in T} H\overline{t}$

We assume $1_F \in T$ and represent elements of *F* by reduced words. For a $w \in F$ define $\underline{w} := t \in T$ with $w \in Et$.

Lemma (Schreier (see Alexander's talk))

The following set generates E:

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Finite index subgroups

Let $G = \langle X | R \rangle$, so that $G \cong F/N$ where F = F(X) and $N = \langle \langle R \rangle \rangle$. We denote the natural map $\overline{}: F \to G$ by bars. Let H = E/N < G and let $T \subseteq F$ be a right transversal of E in F:

$$F = \bigcup_{t \in T} Et$$
 and thus $G = \bigcup_{t \in T} H\overline{t}$

We assume $1_F \in T$ and represent elements of *F* by reduced words. For a $w \in F$ define $\underline{w} := t \in T$ with $w \in Et$.

Lemma (Schreier (see Alexander's talk))

The following set generates E:

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Similarly, $H \leq G$ is generated by the images $Y \subseteq G$.

Finite index subgroups

Let $G = \langle X | R \rangle$, so that $G \cong F/N$ where F = F(X) and $N = \langle \langle R \rangle \rangle$. We denote the natural map $\overline{}: F \to G$ by bars. Let H = E/N < G and let $T \subseteq F$ be a right transversal of E in F:

$$F = \bigcup_{t \in T} Et$$
 and thus $G = \bigcup_{t \in T} H\overline{t}$

We assume $1_F \in T$ and represent elements of *F* by reduced words. For a $w \in F$ define $\underline{w} := t \in T$ with $w \in Et$.

Lemma (Schreier (see Alexander's talk))

The following set generates E:

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Similarly, $H \leq G$ is generated by the images $\overline{Y} \subseteq G$.

Theorem (Nielsen-Schreier)

If T is prefix-closed, then E is a free group on Y.

Max Neunhöffer (University of St Andrews)

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := x_1 \cdots x_i$ for $0 \le i \le k$.

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := \underline{x_1 \cdots x_i}$ for $0 \le i \le k$. Note $t_0 = t_k = 1_F$.

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := \underline{x_1 \cdots x_i}$ for $0 \le i \le k$. Note $t_0 = t_k = 1_F$. Then

$$w = (t_0 x_1 t_1^{-1})(t_1 x_2 t_2^{-1}) \cdots (t_{k-1} x_k t_k^{-1})$$

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := \underline{x_1 \cdots x_i}$ for $0 \le i \le k$. Note $t_0 = t_k = 1_F$. Then

$$w = (t_0 x_1 t_1^{-1})(t_1 x_2 t_2^{-1}) \cdots (t_{k-1} x_k t_k^{-1})$$

• If
$$tx \in T$$
, then $tx(\underline{tx})^{-1} = 1_F$.

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := \underline{x_1 \cdots x_i}$ for $0 \le i \le k$. Note $t_0 = t_k = 1_F$. Then

$$w = (t_0 x_1 t_1^{-1})(t_1 x_2 t_2^{-1}) \cdots (t_{k-1} x_k t_k^{-1})$$

- If $tx \in T$, then $tx(\underline{tx})^{-1} = 1_F$.
- Thus, if *T* is prefix-closed and $w \in T$, all factors are 1_F .

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := \underline{x_1 \cdots x_i}$ for $0 \le i \le k$. Note $t_0 = t_k = 1_F$. Then

$$w = (t_0 x_1 t_1^{-1})(t_1 x_2 t_2^{-1}) \cdots (t_{k-1} x_k t_k^{-1})$$

- If $tx \in T$, then $tx(\underline{tx})^{-1} = 1_F$.
- Thus, if *T* is prefix-closed and $w \in T$, all factors are 1_F .
- Furthermore, for $w = tx \notin T$, all but the last factor are 1_F .

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := \underline{x_1 \cdots x_i}$ for $0 \le i \le k$. Note $t_0 = t_k = 1_F$. Then

$$w = (t_0 x_1 t_1^{-1})(t_1 x_2 t_2^{-1}) \cdots (t_{k-1} x_k t_k^{-1})$$

and all $t_{i-1}x_it_i^{-1}$ are either 1_F or in *Y*.

- If $tx \in T$, then $tx(\underline{tx})^{-1} = 1_F$.
- Thus, if *T* is prefix-closed and $w \in T$, all factors are 1_F .
- Furthermore, for $w = tx \notin T$, all but the last factor are 1_F .

This implies that we get a well-defined isomorphism $\rho : E \to F(Y)$.

$$Y := \left\{ tx(\underline{tx})^{-1} \mid t \in T, x \in X, tx \neq \underline{tx} \right\} \subseteq F \setminus \{1_F\}$$

Idea of proofs: How do we map E to F(Y)?

Let $w = x_1 x_2 \cdots x_k \in E$ and set $t_i := \underline{x_1 \cdots x_i}$ for $0 \le i \le k$. Note $t_0 = t_k = 1_F$. Then

$$w = (t_0 x_1 t_1^{-1})(t_1 x_2 t_2^{-1}) \cdots (t_{k-1} x_k t_k^{-1})$$

and all $t_{i-1}x_it_i^{-1}$ are either 1_F or in *Y*.

- If $tx \in T$, then $tx(\underline{tx})^{-1} = 1_F$.
- Thus, if *T* is prefix-closed and $w \in T$, all factors are 1_F .
- Furthermore, for $w = tx \notin T$, all but the last factor are 1_F .

This implies that we get a well-defined isomorphism $\rho : E \to F(Y)$.

Assume from now on that *T* is prefix-closed.

Max Neunhöffer (University of St Andrews)

Finitely presented groups 3

For $G = F / \langle \langle R \rangle \rangle$, $H = E / \langle \langle R \rangle \rangle$, T and Y as above, if T is prefix-closed, then H = E/N is isomorphic to

$$\mathcal{H}' := \left\langle \mathcal{Y} \mid
ho(twt^{-1}) ext{ for all } t \in \mathcal{T}, w \in \mathcal{R}
ight\}$$

For $G = F / \langle \langle R \rangle \rangle$, $H = E / \langle \langle R \rangle \rangle$, T and Y as above, if T is prefix-closed, then H = E / N is isomorphic to

$$\mathcal{H}' := \left\langle Y \mid
ho(twt^{-1}) ext{ for all } t \in \mathcal{T}, w \in \mathcal{R}
ight
brace$$

Thus: if $[G: H] < \infty$ and we have a coset table for *G* and *H*, we can compute the Schreier generators and write down this presentation for *H* explicitly. This is the Reidemeister-Schreier Algorithm.

For $G = F / \langle \langle R \rangle \rangle$, $H = E / \langle \langle R \rangle \rangle$, T and Y as above, if T is prefix-closed, then H = E / N is isomorphic to

$$\mathcal{H}':=\left\langle m{Y}\mid
ho(twt^{-1}) ext{ for all }t\in\mathcal{T},w\inm{R}
ight
brace$$
 .

Thus: if $[G: H] < \infty$ and we have a coset table for *G* and *H*, we can compute the Schreier generators and write down this presentation for *H* explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)

Let $G := \langle s, t | s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. We know that |G| = 8 and H is a Klein four group.

For $G = F / \langle \langle R \rangle \rangle$, $H = E / \langle \langle R \rangle \rangle$, T and Y as above, if T is prefix-closed, then H = E / N is isomorphic to

$$\mathcal{H}':=\left\langle m{Y}\mid
ho(twt^{-1}) ext{ for all }t\in m{T},w\inm{R}
ight
brace$$
 .

Thus: if $[G: H] < \infty$ and we have a coset table for *G* and *H*, we can compute the Schreier generators and write down this presentation for *H* explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)

Let $G := \langle s, t \mid s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. We know that |G| = 8 and H is a Klein four group. Here is the coset table: $1 = H \quad 2 \quad 2 \quad 1 \\ 2 = Hs \quad 1 \quad 1 \quad 2$

For $G = F / \langle \langle R \rangle \rangle$, $H = E / \langle \langle R \rangle \rangle$, T and Y as above, if T is prefix-closed, then H = E / N is isomorphic to

$$\mathcal{H}':=\left\langle m{Y}\mid
ho(tm{w}t^{-1}) ext{ for all }t\in m{T},m{w}\inm{R}
ight
brace$$
 .

Thus: if $[G: H] < \infty$ and we have a coset table for *G* and *H*, we can compute the Schreier generators and write down this presentation for *H* explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)

Let $G := \langle s, t \mid s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. We know that |G| = 8 and H is a Klein four group. Here is the coset table: $1 = H \quad 2 \quad 2 \quad 1 \\ 2 = Hs \quad 1 \quad 1 \quad 2$ The transversal T is $\{1, s\}$,

For $G = F / \langle \langle R \rangle \rangle$, $H = E / \langle \langle R \rangle \rangle$, T and Y as above, if T is prefix-closed, then H = E / N is isomorphic to

$$\mathcal{H}':=\left\langle m{Y}\mid
ho(twt^{-1}) ext{ for all }t\in m{T},w\inm{R}
ight
brace$$
 .

Thus: if $[G: H] < \infty$ and we have a coset table for *G* and *H*, we can compute the Schreier generators and write down this presentation for *H* explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)

Let $G := \langle s, t | s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. We know that |G| = 8 and H is a Klein four group. Here is the coset table: $1 = H \quad 2 \quad 2 \quad 1$ $2 = Hs \quad 1 \quad 1 \quad 2$ The transversal T is $\{1, s\}$, the Schreier generators are: $\{1ss^{-1} = 1, 1t1^{-1} = t, ss1^{-1} = s^2, sts^{-1}\} \setminus \{1\}$

Max Neunhöffer (University of St Andrews)

For $G = F / \langle \langle R \rangle \rangle$, $H = E / \langle \langle R \rangle \rangle$, T and Y as above, if T is prefix-closed, then H = E / N is isomorphic to

$$\mathcal{H}':=\left\langle m{Y}\mid
ho(tm{w}t^{-1}) ext{ for all }t\in m{T},m{w}\inm{R}
ight
brace$$
 .

Thus: if $[G: H] < \infty$ and we have a coset table for *G* and *H*, we can compute the Schreier generators and write down this presentation for *H* explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)

Let $G := \langle s, t \mid s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. We know that |G| = 8 and H is a Klein four group. Here is the coset table: $\begin{array}{c|c} s \mid s^{-1} \mid t \\ 1 = H \mid 2 \mid 2 \mid 1 \\ 2 = Hs \mid 1 \mid 1 \mid 2 \end{array}$ The transversal T is $\{1, s\}$, the Schreier generators are: $\{1ss^{-1} = 1, 1t1^{-1} = t, ss1^{-1} = s^2, sts^{-1}\} \setminus \{1\} = \{t, s^2, sts^{-1}\}.$

Max Neunhöffer (University of St Andrews)

Let $G := \langle s, t | s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. Transversal: $T = \{1, s\}$, Schreier generators: $\{t, s^2, sts^{-1}\}$.

Let $G := \langle s, t | s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. Transversal: $T = \{1, s\}$, Schreier generators: $\{t, s^2, sts^{-1}\}$. If F := F(s, t) and $N := \langle \langle s^4, t^2, stst \rangle \rangle$ then G = F/N and E/N := H,

•
$$\rho(1s^41^{-1}) = \rho(s^4) = (1ss^{-1})(ss^{-1})(1ss^{-1})(ss^{-1}) = B^2$$

•
$$\rho(1s^41^{-1}) = \rho(s^4) = (1ss^{-1})(ss1^{-1})(1ss^{-1})(ss1^{-1}) = B^2,$$

• $\rho(ss^4s^{-1} = \rho(s^4) = B^2,$

•
$$\rho(1s^41^{-1}) = \rho(s^4) = (1ss^{-1})(ss1^{-1})(1ss^{-1})(ss1^{-1}) = B^2$$

•
$$\rho(ss^4s^{-1} = \rho(s^4) = B^2,$$

•
$$\rho(1t^21^{-1}) = \rho(t^2) = (1t^{-1})(1t^{-1}) = A^2$$
,

•
$$\rho(1s^41^{-1}) = \rho(s^4) = (1ss^{-1})(ss^{-1})(1ss^{-1})(ss^{-1}) = B^2$$
,

•
$$\rho(ss^4s^{-1} = \rho(s^4) = B^2,$$

• $\rho(1t^21^{-1}) = \rho(t^2) = (1t1^{-1})(1t1^{-1}) = A^2,$
• $\rho(st^2s^{-1}) = \rho(st^2s^{-1}) = (1ss^{-1})(sts^{-1})(sts^{-1}1^{-1}) = C^2,$

•
$$\rho(1s^41^{-1}) = \rho(s^4) = (1s^{-1})(ss^{-1})(1s^{-1})(ss^{-1})(ss^{-1}) = B^2$$
,

•
$$\rho(ss^4s^{-1} = \rho(s^4) = B^2,$$

• $\rho(1t^21^{-1}) = \rho(t^2) = (1t1^{-1})(1t1^{-1}) = A^2,$
• $\rho(st^2s^{-1}) = \rho(st^2s^{-1}) = (1ss^{-1})(sts^{-1})(sts^{-1})(ss^{-1}1^{-1}) = C^2,$
• $\rho(1stst1^{-1}) = \rho(stst) = (1ss^{-1})(sts^{-1})(ss1^{-1})(1t1^{-1}) = CBA,$

•
$$\rho(1s^41^{-1}) = \rho(s^4) = (1ss^{-1})(ss^{-1})(1ss^{-1})(ss^{-1}) = B^2$$
,

•
$$\rho(ss^4s^{-1} = \rho(s^4) = B^2,$$

• $\rho(1t^21^{-1}) = \rho(t^2) = (1t1^{-1})(1t1^{-1}) = A^2,$
• $\rho(st^2s^{-1}) = \rho(st^2s^{-1}) = (1ss^{-1})(sts^{-1})(sts^{-1})(ss^{-1}1^{-1}) = C^2,$
• $\rho(1stst1^{-1}) = \rho(stst) = (1ss^{-1})(sts^{-1})(ss^{-1})(1t1^{-1}) = CBA,$
• $\rho(sststs^{-1}) = (1ss^{-1})(ss^{-1})(1t1^{-1})(1ss^{-1})(sts^{-1})(ss^{-1}1^{-1}) = BAC.$

Let $G := \langle s, t | s^4, t^2, stst \rangle$ and $H := \langle s^2, t \rangle$. Transversal: $T = \{1, s\}$, Schreier generators: $\{t, s^2, sts^{-1}\}$. If F := F(s, t) and $N := \langle \langle s^4, t^2, stst \rangle \rangle$ then G = F/N and E/N := H, thus E is free on $(A, B, C) := (t, s^2, sts^{-1})$ (it is of index 2 in F). Reidemeister-Schreier now gives the following relators:

•
$$\rho(1s^41^{-1}) = \rho(s^4) = (1ss^{-1})(ss^{-1})(1ss^{-1})(ss^{-1}) = B^2$$
,

•
$$\rho(ss^4s^{-1} = \rho(s^4) = B^2,$$

• $\rho(1t^21^{-1}) = \rho(t^2) = (1t1^{-1})(1t1^{-1}) = A^2,$
• $\rho(st^2s^{-1}) = \rho(st^2s^{-1}) = (1ss^{-1})(sts^{-1})(sts^{-1})(ss^{-1}1^{-1}) = C^2,$
• $\rho(1stst1^{-1}) = \rho(stst) = (1ss^{-1})(sts^{-1})(ss^{-1})(1t1^{-1}) = CBA,$
• $\rho(sststs^{-1}) = (1ss^{-1})(ss^{-1})(1t1^{-1})(1ss^{-1})(sts^{-1})(ss^{-1}1^{-1}) = BAC.$

Thus, we get that $H \cong \langle A, B, C | B^2, A^2, C^2, CBA, BAC \rangle$.

Finding presentations on the user supplied generators works similarly.

Finding presentations on the user supplied generators works similarly.

http://tinyurl.com/MNGAPsess/GAP_FP_6.g

Let $G := \langle X | R \rangle$. How could we prove that $|G| = \infty$?

Let $G := \langle X | R \rangle$. How could we prove that $|G| = \infty$?

First idea: Abelian invariants, but what if they are all positive?

Let
$$G := \langle X | R \rangle$$
. How could we prove that $|G| = \infty$?

First idea: Abelian invariants, but what if they are all positive?

Second idea:

• Compute some low index subgroups, result is a coset table

Let
$$G := \langle X | R \rangle$$
. How could we prove that $|G| = \infty$?

First idea: Abelian invariants, but what if they are all positive?

Second idea:

- Compute some low index subgroups, result is a coset table
- Use Reidemeister-Schreier to find presentations for them.

Let
$$G := \langle X | R \rangle$$
. How could we prove that $|G| = \infty$?

First idea: Abelian invariants, but what if they are all positive?

Second idea:

- Compute some low index subgroups, result is a coset table
- Use Reidemeister-Schreier to find presentations for them.
- Compute the Abelian invariants on these presentations.

Let
$$G := \langle X | R \rangle$$
. How could we prove that $|G| = \infty$?

First idea: Abelian invariants, but what if they are all positive?

Second idea:

- Compute some low index subgroups, result is a coset table
- Use Reidemeister-Schreier to find presentations for them.
- Compute the Abelian invariants on these presentations.
- If we find a 0, the group *G* is infinite as well.

Let
$$G := \langle X | R \rangle$$
. How could we prove that $|G| = \infty$?

First idea: Abelian invariants, but what if they are all positive?

Second idea:

- Compute some low index subgroups, result is a coset table
- Use Reidemeister-Schreier to find presentations for them.
- Compute the Abelian invariants on these presentations.
- If we find a 0, the group *G* is infinite as well.

http://tinyurl.com/MNGAPsess/GAP_FP_7.g

Let *A* be a finite alphabet and *A*^{*} the set of all words in *A*. A rewrite system (RWS) is a set of rules $v \rightarrow w$ where $v, w \in A^*$.

Let *A* be a finite alphabet and *A*^{*} the set of all words in *A*. A rewrite system (RWS) is a set of rules $v \to w$ where $v, w \in A^*$. We then say that $avb \to awb$ for all $a, b \in A^*$

Let *A* be a finite alphabet and *A*^{*} the set of all words in *A*. A rewrite system (RWS) is a set of rules $v \to w$ where $v, w \in A^*$. We then say that $avb \to awb$ for all $a, b \in A^*$ and write $c \Rightarrow d$, if c = d or there is a finite tuple $(c_1, c_2, ..., c_k)$ of words with

$$c \rightarrow c_1 \rightarrow c_2 \rightarrow \cdots \rightarrow c_k \rightarrow d$$

Let *A* be a finite alphabet and *A*^{*} the set of all words in *A*. A rewrite system (RWS) is a set of rules $v \to w$ where $v, w \in A^*$. We then say that $avb \to awb$ for all $a, b \in A^*$ and write $c \Rightarrow d$, if c = d or there is a finite tuple $(c_1, c_2, ..., c_k)$ of words with

$$c \rightarrow c_1 \rightarrow c_2 \rightarrow \cdots \rightarrow c_k \rightarrow d$$

A word $v \in A^*$ is called irreducible, if there is no $w \in A^*$ with $v \to w$.

Let *A* be a finite alphabet and *A*^{*} the set of all words in *A*. A rewrite system (RWS) is a set of rules $v \to w$ where $v, w \in A^*$. We then say that $avb \to awb$ for all $a, b \in A^*$ and write $c \Rightarrow d$, if c = d or there is a finite tuple $(c_1, c_2, ..., c_k)$ of words with

$$c \rightarrow c_1 \rightarrow c_2 \rightarrow \cdots \rightarrow c_k \rightarrow d$$

A word $v \in A^*$ is called irreducible, if there is no $w \in A^*$ with $v \to w$.

Definition (Termination)

A RWS is called terminating, if there is no infinite chain of words $w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow \cdots$

Let *A* be a finite alphabet and *A*^{*} the set of all words in *A*. A rewrite system (RWS) is a set of rules $v \to w$ where $v, w \in A^*$. We then say that $avb \to awb$ for all $a, b \in A^*$ and write $c \Rightarrow d$, if c = d or there is a finite tuple $(c_1, c_2, ..., c_k)$ of words with

$$c \rightarrow c_1 \rightarrow c_2 \rightarrow \cdots \rightarrow c_k \rightarrow d$$

A word $v \in A^*$ is called irreducible, if there is no $w \in A^*$ with $v \to w$.

Definition (Termination)

A RWS is called terminating, if there is no infinite chain of words $w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow \cdots$

Definition (Confluence and completeness)

A RWS is called confluent, if for all $a, b, c \in A^*$ with $a \Rightarrow b$ and $a \Rightarrow c$ there is a $d \in A^*$ with $b \Rightarrow d$ and $c \Rightarrow d$.

Let *A* be a finite alphabet and *A*^{*} the set of all words in *A*. A rewrite system (RWS) is a set of rules $v \to w$ where $v, w \in A^*$. We then say that $avb \to awb$ for all $a, b \in A^*$ and write $c \Rightarrow d$, if c = d or there is a finite tuple (c_1, c_2, \ldots, c_k) of words with

$$c \rightarrow c_1 \rightarrow c_2 \rightarrow \cdots \rightarrow c_k \rightarrow d$$

A word $v \in A^*$ is called irreducible, if there is no $w \in A^*$ with $v \to w$.

Definition (Termination)

A RWS is called terminating, if there is no infinite chain of words $w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow \cdots$

Definition (Confluence and completeness)

A RWS is called confluent, if for all $a, b, c \in A^*$ with $a \Rightarrow b$ and $a \Rightarrow c$ there is a $d \in A^*$ with $b \Rightarrow d$ and $c \Rightarrow d$.

A terminating and confluent RWS is called complete.

Max Neunhöffer (University of St Andrews)

If a RWS is terminating, then every word $w \in A^*$ can only be rewritten to finitely many words.

If a RWS is terminating, then every word $w \in A^*$ can only be rewritten to finitely many words.

Definition/Proposition (Local confluence)

A RWS is called locally confluent, if for all $a, b, c \in A^*$ with $a \to b$ and $a \to c$ there is a $d \in A^*$ with $b \Rightarrow d$ and $c \Rightarrow d$.

If a RWS is terminating, then every word $w \in A^*$ can only be rewritten to finitely many words.

Definition/Proposition (Local confluence)

A RWS is called locally confluent, if for all $a, b, c \in A^*$ with $a \to b$ and $a \to c$ there is a $d \in A^*$ with $b \Rightarrow d$ and $c \Rightarrow d$. A terminating and locally confluent RWS is complete.

If a RWS is terminating, then every word $w \in A^*$ can only be rewritten to finitely many words.

Definition/Proposition (Local confluence)

A RWS is called locally confluent, if for all $a, b, c \in A^*$ with $a \to b$ and $a \to c$ there is a $d \in A^*$ with $b \Rightarrow d$ and $c \Rightarrow d$. A terminating and locally confluent RWS is complete.

Definition (Equivalence)

Let \Leftrightarrow be the transitive, reflexive and symmetric closure of \rightarrow , i.e., the finest equivalence relation with $v \Leftrightarrow w$ for all rules $v \rightarrow w$.

If a RWS is terminating, then every word $w \in A^*$ can only be rewritten to finitely many words.

Definition/Proposition (Local confluence)

A RWS is called locally confluent, if for all $a, b, c \in A^*$ with $a \to b$ and $a \to c$ there is a $d \in A^*$ with $b \Rightarrow d$ and $c \Rightarrow d$. A terminating and locally confluent RWS is complete.

Definition (Equivalence)

Let \Leftrightarrow be the transitive, reflexive and symmetric closure of \rightarrow , i.e., the finest equivalence relation with $v \Leftrightarrow w$ for all rules $v \rightarrow w$.

Lemma

If a RWS is complete, then every \Leftrightarrow class contains exactly one irreducible element and all words in the class can be rewritten to it.

Max Neunhöffer (University of St Andrews)

Finitely presented groups 3

Question

How can it ever happen, that $a \rightarrow b$ and $a \rightarrow c$, but that b and c cannot be rewritten to any common word d?

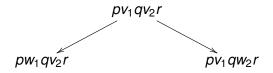
How can it ever happen, that $a \rightarrow b$ and $a \rightarrow c$, but that *b* and *c* cannot be rewritten to any common word *d*?

Assume $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$ are rules, if $a = pv_1qv_2r$, then both rules apply, but we have:

 pv_1qv_2r

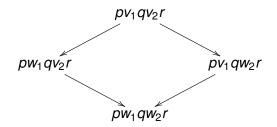
How can it ever happen, that $a \rightarrow b$ and $a \rightarrow c$, but that *b* and *c* cannot be rewritten to any common word *d*?

Assume $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$ are rules, if $a = pv_1qv_2r$, then both rules apply, but we have:



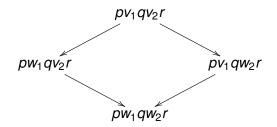
How can it ever happen, that $a \rightarrow b$ and $a \rightarrow c$, but that *b* and *c* cannot be rewritten to any common word *d*?

Assume $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$ are rules, if $a = pv_1qv_2r$, then both rules apply, but we have:



How can it ever happen, that $a \rightarrow b$ and $a \rightarrow c$, but that *b* and *c* cannot be rewritten to any common word *d*?

Assume $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$ are rules, if $a = pv_1qv_2r$, then both rules apply, but we have:



Thus: the left hand sides have to overlap!

Finitely presented groups 3

Definition (Critical pair)

A pair of rules $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$ is called a critical pair, if:

- $v_1 = rs$ and $v_2 = st$ for some $r, s, t \in A^*$, or
- $v_1 = rst$ and $v_2 = s$ for some $r, s, t \in A^*$,

with $s \neq \varepsilon$ in both cases.

Definition (Critical pair)

A pair of rules $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$ is called a critical pair, if:

- $v_1 = rs$ and $v_2 = st$ for some $r, s, t \in A^*$, or
- $v_1 = rst$ and $v_2 = s$ for some $r, s, t \in A^*$,

with $s \neq \varepsilon$ in both cases.

Lemma

A RWS is locally confluent if and only if the following conditions are fulfilled for all critical pairs $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$:

- If $v_1 = rs$ and $v_2 = st$, then $\exists w \in A^*$ with $w_1 t \Rightarrow w$ and $rw_2 \Rightarrow w$.
- If $v_1 = rst$ and $v_2 = s$ then $\exists w \in A^*$ with $rw_2 t \Rightarrow w$ and $w_1 \Rightarrow w$.

Definition (Critical pair)

A pair of rules $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$ is called a critical pair, if:

- $v_1 = rs$ and $v_2 = st$ for some $r, s, t \in A^*$, or
- $v_1 = rst$ and $v_2 = s$ for some $r, s, t \in A^*$,

with $s \neq \varepsilon$ in both cases.

Lemma

A RWS is locally confluent if and only if the following conditions are fulfilled for all critical pairs $v_1 \rightarrow w_1$ and $v_2 \rightarrow w_2$:

- If $v_1 = rs$ and $v_2 = st$, then $\exists w \in A^*$ with $w_1t \Rightarrow w$ and $rw_2 \Rightarrow w$.
- If $v_1 = rst$ and $v_2 = s$ then $\exists w \in A^*$ with $rw_2 t \Rightarrow w$ and $w_1 \Rightarrow w$.

We can check confluence of a finite, terminating RWS algorithmically!

The idea

Definition (Reduction ordering)

A well-ordering on A^* is called a reduction ordering, if $u \le v$ implies $uw \leq vw$ and $wu \leq wv$ for all $u, v, w \in A^*$.

The idea

Definition (Reduction ordering)

A well-ordering on A^* is called a reduction ordering, if $u \le v$ implies uw < vw and wu < wv for all $u, v, w \in A^*$.

Example: "shortlex": sort first by length and then lexicographically.

The idea

Definition (Reduction ordering)

A well-ordering on A^* is called a reduction ordering, if $u \leq v$ implies uw < vw and $wu \leq wv$ for all $u, v, w \in A^*$.

Example: "shortlex": sort first by length and then lexicographically.

Idea of the Knuth-Bendix completion procedure

Start with a finite RWS and choose a reduction ordering such that v > w for all rules $v \to w$.

Definition (Reduction ordering)

A well-ordering on A^* is called a reduction ordering, if $u \leq v$ implies uw < vw and $wu \leq wv$ for all $u, v, w \in A^*$.

Example: "shortlex": sort first by length and then lexicographically.

Idea of the Knuth-Bendix completion procedure

Start with a finite RWS and choose a reduction ordering such that v > w for all rules $v \to w$.

Consider all possible critical pairs $rs \rightarrow w_1$ and $st \rightarrow w_2$, and:

• rewrite $w_1 t \Rightarrow w'_1$ and $rw_2 \Rightarrow w'_2$ with w'_1 and w'_2 irreducible,

• if
$$w'_1 \neq w'_2$$
, then

• either add
$$w'_1 \rightarrow w'_2$$
 if $w'_1 > w'_2$,

• or add
$$w'_2 \rightarrow w'_1$$
 if $w'_2 > w'_1$.

Definition (Reduction ordering)

A well-ordering on A^* is called a reduction ordering, if $u \leq v$ implies uw < vw and wu < wv for all $u, v, w \in A^*$.

Example: "shortlex": sort first by length and then lexicographically.

Idea of the Knuth-Bendix completion procedure

Start with a finite RWS and choose a reduction ordering such that v > w for all rules $v \to w$.

Consider all possible critical pairs $rs \rightarrow w_1$ and $st \rightarrow w_2$, and:

- rewrite $w_1 t \Rightarrow w'_1$ and $rw_2 \Rightarrow w'_2$ with w'_1 and w'_2 irreducible,
- if $w'_1 \neq w'_2$, then
 - either add $w'_1 \rightarrow w'_2$ if $w'_1 > w'_2$,
 - or add $w_2' \rightarrow w_1^{\overline{i}}$ if $w_2' > w_1^{\overline{i}}$.

(and similarly for $rst \rightarrow w_1$ and $s \rightarrow w_2$)

Definition (Reduction ordering)

A well-ordering on A^* is called a reduction ordering, if $u \leq v$ implies uw < vw and wu < wv for all $u, v, w \in A^*$.

Example: "shortlex": sort first by length and then lexicographically.

Idea of the Knuth-Bendix completion procedure

Start with a finite RWS and choose a reduction ordering such that v > w for all rules $v \to w$.

Consider all possible critical pairs $rs \rightarrow w_1$ and $st \rightarrow w_2$, and:

- rewrite $w_1 t \Rightarrow w'_1$ and $rw_2 \Rightarrow w'_2$ with w'_1 and w'_2 irreducible,
- if $w'_1 \neq w'_2$, then
 - either add $w'_1 \rightarrow w'_2$ if $w'_1 > w'_2$,
 - or add $w_2' \rightarrow w_1^{\overline{1}}$ if $w_2' > w_1^{\overline{1}}$.

(and similarly for $rst \rightarrow w_1$ and $s \rightarrow w_2$)

If the RWS is already or becomes confluent this procedure terminates.

Every minimal word (in its class) is irreducible.

Proposition

If $v \Leftrightarrow w$ and v > w, then after running Knuth-Bendix long enough, we will get $v \Rightarrow w$.

Proposition

If $v \Leftrightarrow w$ and v > w, then after running Knuth-Bendix long enough, we will get $v \Rightarrow w$.

Proposition

If the RWS has only finitely many \Leftrightarrow -classes, then Knuth-Bendix will terminate with a complete RWS.

Proposition

If $v \Leftrightarrow w$ and v > w, then after running Knuth-Bendix long enough, we will get $v \Rightarrow w$.

Proposition

If the RWS has only finitely many \Leftrightarrow -classes, then Knuth-Bendix will terminate with a complete RWS.

Remark

With a complete RWS we have a good way to decide $v \Leftrightarrow w$.

We can present *G* as a monoid by adding relators $xx^{-1} = \varepsilon$ and $x^{-1}x = \varepsilon$ for all $x \in X$.

We can present *G* as a monoid by adding relators $xx^{-1} = \varepsilon$ and $x^{-1}x = \varepsilon$ for all $x \in X$.

For $\hat{X} := X \cup X^{-1}$ the set \hat{X}^* is a free monoid and *G* is a quotient.

We can present *G* as a monoid by adding relators $xx^{-1} = \varepsilon$ and $x^{-1}x = \varepsilon$ for all $x \in X$.

For $\hat{X} := X \cup X^{-1}$ the set \hat{X}^* is a free monoid and *G* is a quotient.

If we choose a reduction order and add one rule for each equation in the presentation, then \Leftrightarrow is precisely the congruence on \hat{X}^* such that $G \cong \hat{X}^* / \Leftrightarrow$.

We can present *G* as a monoid by adding relators $xx^{-1} = \varepsilon$ and $x^{-1}x = \varepsilon$ for all $x \in X$.

For $\hat{X} := X \cup X^{-1}$ the set \hat{X}^* is a free monoid and *G* is a quotient.

If we choose a reduction order and add one rule for each equation in the presentation, then \Leftrightarrow is precisely the congruence on \hat{X}^* such that $G \cong \hat{X}^* / \Leftrightarrow$.

Therefore, completing this RWS solves the word problem in *G*.

We can present *G* as a monoid by adding relators $xx^{-1} = \varepsilon$ and $x^{-1}x = \varepsilon$ for all $x \in X$.

For $\hat{X} := X \cup X^{-1}$ the set \hat{X}^* is a free monoid and *G* is a quotient.

If we choose a reduction order and add one rule for each equation in the presentation, then \Leftrightarrow is precisely the congruence on \hat{X}^* such that $G \cong \hat{X}^* / \Leftrightarrow$.

Therefore, completing this RWS solves the word problem in G.

http://tinyurl.com/MNGAPsess/GAP_FP_8.g