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Presentations for subgroups of FP groups Finite index subgroups

Let G = 〈X | R〉, so that G ∼= F/N where F = F (X ) and N = 〈〈R〉〉.

We denote the natural map : F → G by bars.
Let H = E/N < G and let T ⊆ F be a right transversal of E in F :

F =
.⋃

t∈T

Et and thus G =
.⋃

t∈T

Ht

We assume 1F ∈ T and represent elements of F by reduced words.
For a w ∈ F define w := t ∈ T with w ∈ Et .

Lemma (Schreier (see Alexander’s talk))
The following set generates E:

Y :=
{

tx(tx)−1 | t ∈ T , x ∈ X , tx 6= tx
}
⊆ F \ {1F}

Similarly, H ≤ G is generated by the images Y ⊆ G.

Theorem (Nielsen-Schreier)
If T is prefix-closed, then E is a free group on Y .
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Recall:

Y :=
{

tx(tx)−1 | t ∈ T , x ∈ X , tx 6= tx
}
⊆ F \ {1F}

Idea of proofs: How do we map E to F (Y )?

Let w = x1x2 · · · xk ∈ E and set ti := x1 · · · xi for 0 ≤ i ≤ k .
Note t0 = tk = 1F . Then

w = (t0x1t−1
1 )(t1x2t−1

2 ) · · · (tk−1xk t−1
k )

and all ti−1xi t−1
i are either 1F or in Y .

If tx ∈ T , then tx(tx)−1 = 1F .
Thus, if T is prefix-closed and w ∈ T , all factors are 1F .
Furthermore, for w = tx /∈ T , all but the last factor are 1F .

This implies that we get a well-defined isomorphism ρ : E → F (Y ).

Assume from now on that T is prefix-closed.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Theorem (Reidemeister-Schreier)

For G = F/ 〈〈R〉〉, H = E/ 〈〈R〉〉, T and Y as above, if T is
prefix-closed, then H = E/N is isomorphic to

H ′ :=
〈

Y | ρ(twt−1) for all t ∈ T ,w ∈ R
}
.

Thus: if [G : H] <∞ and we have a coset table for G and H, we can
compute the Schreier generators and write down this presentation for
H explicitly. This is the Reidemeister-Schreier Algorithm.

Example (The dihedral group of order 8)

Let G :=
〈
s, t | s4, t2, stst

〉
and H :=

〈
s2, t

〉
. We know that |G| = 8 and

H is a Klein four group.

Here is the coset table:
s s−1 t

1 = H 2 2 1
2 = Hs 1 1 2

The transversal T is {1, s}, the Schreier generators are:
{1ss−1 = 1,1t1−1 = t , ss1−1 = s2, sts−1} \ {1} = {t , s2, sts−1}.
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Presentations for subgroups of FP groups The Reidemeister-Schreier method

Example (The dihedral group of order 8 (continued))

Let G :=
〈
s, t | s4, t2, stst

〉
and H :=

〈
s2, t

〉
.

Transversal: T = {1, s}, Schreier generators: {t , s2, sts−1}.

If F := F (s, t) and N :=
〈〈

s4, t2, stst
〉〉

then G = F/N and E/N := H,
thus E is free on (A,B,C) := (t , s2, sts−1) (it is of index 2 in F ).
Reidemeister-Schreier now gives the following relators:

ρ(1s41−1) = ρ(s4) = (1ss−1)(ss1−1)(1ss−1)(ss1−1) = B2,
ρ(ss4s−1 = ρ(s4) = B2,
ρ(1t21−1) = ρ(t2) = (1t1−1)(1t1−1) = A2,
ρ(st2s−1) = ρ(st2s−1) = (1ss−1)(sts−1)(sts−1)(ss−11−1) = C2,
ρ(1stst1−1) = ρ(stst) = (1ss−1)(sts−1)(ss1−1)(1t1−1) = CBA,
ρ(sststs−1) = (1ss−1)(ss1−1)(1t1−1)(1ss−1)(sts−1)(ss−11−1) =
BAC.

Thus, we get that H ∼=
〈
A,B,C | B2,A2,C2,CBA,BAC

〉
.
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Finding presentations on the user supplied generators works similarly.

http://tinyurl.com/MNGAPsess/GAP_FP_6.g
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Proving groups to be infinite Combine low index with Abelian invariants

Problem
Let G := 〈X | R〉. How could we prove that |G| =∞?

First idea: Abelian invariants, but what if they are all positive?

Second idea:
Compute some low index subgroups, result is a coset table
Use Reidemeister-Schreier to find presentations for them.
Compute the Abelian invariants on these presentations.
If we find a 0, the group G is infinite as well.

http://tinyurl.com/MNGAPsess/GAP_FP_7.g
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Rewrite systems Fundamental definitions

Definition (Rewrite system)
Let A be a finite alphabet and A∗ the set of all words in A.
A rewrite system (RWS) is a set of rules v → w where v ,w ∈ A∗.

We then say that avb → awb for all a,b ∈ A∗ and write c ⇒ d , if c = d
or there is a finite tuple (c1, c2, . . . , ck ) of words with

c → c1 → c2 → · · · → ck → d

A word v ∈ A∗ is called irreducible, if there is no w ∈ A∗ with v → w .

Definition (Termination)
A RWS is called terminating, if there is no infinite chain of words
w1 → w2 → w3 → · · ·

Definition (Confluence and completeness)
A RWS is called confluent, if for all a,b, c ∈ A∗ with a⇒ b and a⇒ c
there is a d ∈ A∗ with b ⇒ d and c ⇒ d .
A terminating and confluent RWS is called complete.
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Rewrite systems Local confluence

Lemma
If a RWS is terminating, then every word w ∈ A∗ can only be rewritten
to finitely many words.

Definition/Proposition (Local confluence)
A RWS is called locally confluent, if for all a,b, c ∈ A∗ with a→ b and
a→ c there is a d ∈ A∗ with b ⇒ d and c ⇒ d .
A terminating and locally confluent RWS is complete.

Definition (Equivalence)
Let⇔ be the transitive, reflexive and symmetric closure of→, i.e., the
finest equivalence relation with v ⇔ w for all rules v → w .

Lemma
If a RWS is complete, then every⇔ class contains exactly one
irreducible element and all words in the class can be rewritten to it.
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Rewrite systems Critical pairs

Question
How can it ever happen, that a→ b and a→ c, but that b and c cannot
be rewritten to any common word d?

Assume v1 → w1 and v2 → w2 are rules, if a = pv1qv2r , then both
rules apply, but we have:

pv1qv2r

pw1qv2r pv1qw2r

pw1qw2r

Thus: the left hand sides have to overlap!
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Rewrite systems Critical pairs

Definition (Critical pair)
A pair of rules v1 → w1 and v2 → w2 is called a critical pair, if:

v1 = rs and v2 = st for some r , s, t ∈ A∗, or
v1 = rst and v2 = s for some r , s, t ∈ A∗,

with s 6= ε in both cases.

Lemma
A RWS is locally confluent if and only if the following conditions are
fulfilled for all critical pairs v1 → w1 and v2 → w2:

If v1 = rs and v2 = st, then ∃w ∈ A∗ with w1t ⇒ w and rw2 ⇒ w.
If v1 = rst and v2 = s then ∃w ∈ A∗ with rw2t ⇒ w and w1 ⇒ w.

We can check confluence of a finite, terminating RWS algorithmically!
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The Knuth-Bendix procedure The idea

Definition (Reduction ordering)

A well-ordering on A∗ is called a reduction ordering, if u ≤ v implies
uw ≤ vw and wu ≤ wv for all u, v ,w ∈ A∗.

Example: “shortlex”: sort first by length and then lexicographically.

Idea of the Knuth-Bendix completion procedure
Start with a finite RWS and choose a reduction ordering such that
v > w for all rules v → w .
Consider all possible critical pairs rs → w1 and st → w2, and:

rewrite w1t ⇒ w ′1 and rw2 ⇒ w ′2 with w ′1 and w ′2 irreducible,
if w ′1 6= w ′2, then

either add w ′
1 → w ′

2 if w ′
1 > w ′

2,
or add w ′

2 → w ′
1 if w ′

2 > w ′
1.

(and similarly for rst → w1 and s → w2)

If the RWS is already or becomes confluent this procedure terminates.
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The Knuth-Bendix procedure Properties of the procedure

Every minimal word (in its class) is irreducible.

If the RWS is confluent, then the converse is true, too.

Proposition
If v ⇔ w and v > w , then after running Knuth-Bendix long enough, we
will get v ⇒ w .

Proposition
If the RWS has only finitely many⇔-classes, then Knuth-Bendix will
terminate with a complete RWS.

Remark
With a complete RWS we have a good way to decide v ⇔ w .
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The Knuth-Bendix procedure Knuth-Bendix and groups

Let G = 〈X | R〉.

We can present G as a monoid by adding relators xx−1 = ε and
x−1x = ε for all x ∈ X .

For X̂ := X ∪ X−1 the set X̂ ∗ is a free monoid and G is a quotient.

If we choose a reduction order and add one rule for each equation in
the presentation, then⇔ is precisely the congruence on X̂ ∗ such that
G ∼= X̂ ∗/⇔.

Therefore, completing this RWS solves the word problem in G.

http://tinyurl.com/MNGAPsess/GAP_FP_8.g
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