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Small cancellation theory The theory

Let G := 〈X | R〉 with X̂ := X ∪ X−1. Assume that R is closed under
rotation and inversion and all r ∈ R are reduced.

Definition (Piece)
A piece (w.r.t. R) is a nonempty word p that is a prefix of two different
relators, i.e.: pa,pb ∈ R for a,b ∈ X̂ ∗ with a 6= b.

Definition (Condition C′(λ))

We say 〈X | R〉 is C′(λ), if:
for all r = pa ∈ R where p is a piece, we have |p| < λ · |r |.

(|r | is the length in letters).

Definition (Condition T (q))

We say 〈X | R〉 is T (q), if the following holds:
Let 3 ≤ h < q and (r1, r2, . . . , rh) ∈ Rh with no successive
elements ri , ri+1 or rh, r1 an inverse pair. Then at least one of the
products r1r2, r2r3, . . . , rhr1 is reduced without cancellation.
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Small cancellation theory The theory

Theorem (Lyndon, Schupp)

Let G = 〈X | R〉 with R closed under rotation and inversion and all
r ∈ R are reduced. If 〈X | R〉 fulfills at least one of:

C′(1/6) and T (3), or
C′(1/4) and T (4), or
C′(1/3) and T (6),

then Dehn’s algorithm solves the word problem for G.

What is Dehn’s algorithm?
What does this mean for the structure of G?

Definition (Dehn RWS)

Write all r ∈ R as r = ab with |a| > |b| and define a rule a→ b−1.
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Small cancellation theory Dehn’s algorithm

Algorithm (Dehn’s algorithm)

Let G = 〈X | R〉 and let R be a length-reducing RWS for X̂ = X ∪ X−1.

1 Input: a word w ∈ X̂ ∗.
2 Freely reduce w .
3 If any rewrite rule matches, apply it and go back to 2.
4 Output: the new w .

Note that 3. is not deterministic.

Saying that “Dehn’s algorithm solves the word problem” means:
The output is the empty word ε if and only if w =G 1,
not depending on which rewrite is applied in 3.

Note:
For a general RWS, this does not make sense at all.
If w 6=G 1, then the output can be different, depending on the
choice in 3.
For a word of length n, this terminates after at most n steps.
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Hyperbolic groups Linear Dehn functions

If ab ∈ R with |a| > |b| and w = xay , then Dehn rewrites this to xb−1y .

Thus: w = x(ab)x−1 xb−1y
So w is written as a conjugate of a relator times a shorter word.

Lemma
If G = 〈X | R〉 is small cancellation, then Dehn works and every word
w ∈ X̂ ∗ of length n that is equal to 1 in G is the product of at most n
conjugates of a relator. Thus, the Dehn function δ(n) ≤ n for all n.

Definition (Hyperbolic group)

A group is called hyperbolic, if it has a finite presentation with a Dehn
function that is bounded by a linear function.

We have for a group G = 〈X | R〉:

small cancellation =⇒ Dehn’s algorithm works =⇒ hyperbolic
=⇒ has presentation with a working Dehn

Question: How do we execute Dehn’s algorithm efficiently?
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Finite state automata Definition by picture

X

Y

Z

Y

Z

X

Y
Z

X

Y

Y

Z

2

6

8

7

4 5

Start
1

3

accept

Every path in this digraph has a label.
There is one start state and some accept states.

L := {labels of paths from start to an accept state} ⊆ {X ,Y ,Z}∗

This is a regular language: XY ∗Z (Y + X ) + YZ (YZ )∗(Z + XZ ∗Y ).

Max Neunhöffer (University of St Andrews) Finitely presented groups 4 2 August 2013 6 / 14



Finite state automata Definition by picture

X

Y

Z

Y

Z

X

Y
Z

X

Y

Y

Z

2

6

8

7

4 5

Start
1

3

accept

Every path in this digraph has a label.

There is one start state and some accept states.

L := {labels of paths from start to an accept state} ⊆ {X ,Y ,Z}∗

This is a regular language: XY ∗Z (Y + X ) + YZ (YZ )∗(Z + XZ ∗Y ).

Max Neunhöffer (University of St Andrews) Finitely presented groups 4 2 August 2013 6 / 14



Finite state automata Definition by picture

X

Y

Z

Y

Z

X

Y
Z

X

Y

Y

Z

2

6

8

7

4 5

Start
1

3

accept

Every path in this digraph has a label.
There is one start state and some accept states.

L := {labels of paths from start to an accept state} ⊆ {X ,Y ,Z}∗

This is a regular language: XY ∗Z (Y + X ) + YZ (YZ )∗(Z + XZ ∗Y ).

Max Neunhöffer (University of St Andrews) Finitely presented groups 4 2 August 2013 6 / 14



Finite state automata Definition by picture

X

Y

Z

Y

Z

X

Y
Z

X

Y

Y

Z

2

6

8

7

4 5

Start
1

3

accept

Every path in this digraph has a label.
There is one start state and some accept states.

L := {labels of paths from start to an accept state} ⊆ {X ,Y ,Z}∗

This is a regular language: XY ∗Z (Y + X ) + YZ (YZ )∗(Z + XZ ∗Y ).

Max Neunhöffer (University of St Andrews) Finitely presented groups 4 2 August 2013 6 / 14



Finite state automata Definition by picture

X

Y

Z

Y

Z

X

Y
Z

X

Y

Y

Z

2

6

8

7

4 5

Start
1

3

accept

Every path in this digraph has a label.
There is one start state and some accept states.

L := {labels of paths from start to an accept state} ⊆ {X ,Y ,Z}∗

This is a regular language: XY ∗Z (Y + X ) + YZ (YZ )∗(Z + XZ ∗Y ).

Max Neunhöffer (University of St Andrews) Finitely presented groups 4 2 August 2013 6 / 14



Finite state automata Definition by picture

X

Y

Z

Y

Z

X

Y
Z

X

Y

Y

Z

2

6

8

7

4 5

Start
1

3

accept

Z

ε

Non-deterministic variants:
Allow empty (or ε) transitions.

Allow more than one transition with the same label leaving a state.
However: The classes of languages of deterministic and non-

deterministic finite state automata are the same.
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Finite state automata Using a FSA for a RWS

Assume R is a RWS and assume for simplicity that no left hand side
(LHS) of a rewrite is properly contained in another one.

Definition (FSA for a RWS)
States:
Define a state for every prefix of a LHS of a rewrite.
The empty prefix is the start state.
The complete LHSs are the accept states.
Transitions:
If XY is a non-accepting state, then there is a transition labelled with
“Z” to XYZ if this is still a prefix of a LHS.
If XYZ is not a prefix, then there is a transition labelled with “Z” to the
longest suffix of XYZ that is a prefix of a LHS.
This defines a deterministic FSA which recognises LHSs.

=⇒ Very fast algorithm to recognise rewrite rules that apply.
=⇒ Crucial step for Dehn’s algorithm.
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longest suffix of XYZ that is a prefix of a LHS.
This defines a deterministic FSA which recognises LHSs.
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Automatic groups Definition

Sometimes, we want to describe relations on X̂ ∗ by a FSA:

Definition (2-variable FSA by padding)

Define p : X̂ ∗ × X̂ ∗ → ((X̂ ∪ {$})× (X̂ ∪ {$}))∗ by padding the shorter
word at the end with $ symbols:

p(ABC,DEFGH) = (A,D)(B,E)(C,F )($,G)($,H)

p(ABC,D) = (A,D)(B, $)(C, $)
A FSA with alphabet X̂ ∪ {$} accepts a pair (v ,w) ∈ X̂ ∗ × X̂ ∗ iff there
is a path from the start state to an accept state with label p(v ,w).

We prepare ourselves for the definition of automatic groups:

Definition (Word acceptor)

Let G = 〈X | R〉 and X̂ := X ∪ X−1. A FSA on X̂ is called a word
acceptor for G, if it accepts at least one word for each element of G.
It is called a unique word acceptor, if it accepts exactly one word for
each element of G.
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Automatic groups Definition

Definition (Automatic group)

Let G be a group that is generated as a monoid by the set X̂ . Then G is
automatic w.r.t. X̂ , if there exist FSA W and Mx for x ∈ X̂ ∪ {ε}, s.th.:

W has alphabet X̂ and is a word acceptor for G, and

Mx has alphabet X̂ ∪ {$} and (v ,w) ∈ X̂ ∗ × X̂ ∗ (where v and w
are accepted by W ) is accepted by Mx iff vx =G w .

The automata W and Mx are called an automatic structure for G, the
Mx are the multiplier automata.

Theorem (Epstein et al. 1992)

Being automatic is a property of G and not of X̂ .

Definition (Shortlex automatic structure)

If W accepts precisely the shortlex minimal words of X̂ ∗ for the
elements of G, then (W , {Mx}) is a shortlex automatic structure.
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Automatic groups Computing automatic structures

Definition (Word differences)

Let v ,w ∈ X̂ ∗ and let vi be the prefix of v of length i . The word
differences of v and w are D(v ,w) := {v−1

i wi | i ∈ N} ⊆ G.

Note that all D(v ,w) are finite sets.

Theorem
Let (W , {Mx}) be an automatic structure. The set

D :=
⋃

(v ,w) accepted by some Mx

D(v ,w)

is finite.
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Automatic groups Computing automatic structures

Idea of shortlex automatic structure computation

Let G = 〈X | R〉 and set X̂ := X ∪ X−1.
1 Run a shortlex Knuth-Bendix on a RWS coming from the monoid

presentation.

2 Stop after some time, even if it has not completed.
3 Compute word differences as above, and approximate FSA to

recognise them.
4 Compute a candidate for the word acceptor W .
5 Compute candidates for the multiplier FSA Mx .
6 Carry out correctness tests, terminate if OK, otherwise go back.

http://tinyurl.com/MNGAPsess/GAP_FP_9.g
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Automatic groups Properties

The class of automatic groups is
closed under taking direct products,

closed under taking free products with finite amalgamated
subgroup,
closed under taking HNN-extensions with finite conjugated
subgroup.

Furthermore:
Hyperbolic groups are automatic.
Free factors of automatic groups are automatic.
It has not been proved that direct factors of automatic groups are
automatic.
If [G : H] <∞, then G is automatic iff H is.

Thus:
Automatic groups are a large class of groups with solvable word problem.
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What we left out

In this lecture series we have not mentioned a lot of topics:

Polycyclic groups (see Bettina’s series)
Parallelisation of algorithms
Quotient algorithms: Nilpotent, Soluble, p-Quotient
Finding matrix representations (see W. Plesken et al.)
Finding presentations if group is given in another representation
Symmetric presentations (see R. Curtis et al.)
Infinite presentations
Laws (e.g. Burnside groups and algorithms for such problems)
New developments in algorithmic small cancellation theory
(see Richard’s talk yesterday)

Derek F. Holt, Bettina Eick, Eamonn A. O’Brien:
“Handbook of Computational Group Theory”
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