Finitely presented groups 4

Max Neunhöffer

LMS Short Course on Computational Group Theory 29 July – 2 August 2013

Definition (Piece)

A piece (w.r.t. *R*) is a nonempty word *p* that is a prefix of two different relators, i.e.: $pa, pb \in R$ for $a, b \in \hat{X}^*$ with $a \neq b$.

Definition (Piece)

A piece (w.r.t. *R*) is a nonempty word *p* that is a prefix of two different relators, i.e.: $pa, pb \in R$ for $a, b \in \hat{X}^*$ with $a \neq b$.

Definition (Condition $C'(\lambda)$)

We say $\langle X | R \rangle$ is $C'(\lambda)$, if:

• for all $r = pa \in R$ where p is a piece, we have $|p| < \lambda \cdot |r|$.

(|r| is the length in letters).

Definition (Piece)

A piece (w.r.t. *R*) is a nonempty word *p* that is a prefix of two different relators, i.e.: $pa, pb \in R$ for $a, b \in \hat{X}^*$ with $a \neq b$.

Definition (Condition $C'(\lambda)$)

We say $\langle X | R \rangle$ is $C'(\lambda)$, if:

• for all $r = pa \in R$ where p is a piece, we have $|p| < \lambda \cdot |r|$.

(|r| is the length in letters).

Definition (Condition T(q))

We say $\langle X | R \rangle$ is T(q), if the following holds:

Let 3 ≤ h < q and (r₁, r₂,..., r_h) ∈ R^h with no successive elements r_i, r_{i+1} or r_h, r₁ an inverse pair. Then at least one of the products r₁r₂, r₂r₃,..., r_hr₁ is reduced without cancellation.

Let $G = \langle X | R \rangle$ with R closed under rotation and inversion and all $r \in R$ are reduced. If $\langle X | R \rangle$ fulfills at least one of:

- C'(1/6) and T(3), or
- *C*′(1/4) and *T*(4), or
- C'(1/3) and T(6),

then Dehn's algorithm solves the word problem for G.

Let $G = \langle X | R \rangle$ with R closed under rotation and inversion and all $r \in R$ are reduced. If $\langle X | R \rangle$ fulfills at least one of:

- C'(1/6) and T(3), or
- *C*′(1/4) and *T*(4), or
- *C*′(1/3) and *T*(6),

then Dehn's algorithm solves the word problem for G.

What is Dehn's algorithm?

Let $G = \langle X | R \rangle$ with R closed under rotation and inversion and all $r \in R$ are reduced. If $\langle X | R \rangle$ fulfills at least one of:

- C'(1/6) and T(3), or
- *C*′(1/4) and *T*(4), or
- C'(1/3) and T(6),

then Dehn's algorithm solves the word problem for G.

What is Dehn's algorithm? What does this mean for the structure of *G*?

Let $G = \langle X | R \rangle$ with R closed under rotation and inversion and all $r \in R$ are reduced. If $\langle X | R \rangle$ fulfills at least one of:

- C'(1/6) and T(3), or
- *C*′(1/4) and *T*(4), or
- C'(1/3) and T(6),

then Dehn's algorithm solves the word problem for G.

What is Dehn's algorithm? What does this mean for the structure of *G*?

Definition (Dehn RWS)

Write all $r \in R$ as r = ab with |a| > |b| and define a rule $a \to b^{-1}$.

- Let $G = \langle X | R \rangle$ and let \mathcal{R} be a length-reducing RWS for $\hat{X} = X \cup X^{-1}$.
 - **1** Input: a word $w \in \hat{X}^*$.
 - 2 Freely reduce w.
 - If any rewrite rule matches, apply it and go back to 2.
 - Output: the new w.

- Let $G = \langle X | R \rangle$ and let \mathcal{R} be a length-reducing RWS for $\hat{X} = X \cup X^{-1}$.
 - **1** Input: a word $w \in \hat{X}^*$.
 - 2 Freely reduce w.
 - If any rewrite rule matches, apply it and go back to 2.
 - Output: the new w.

Note that 3. is not deterministic.

- Let $G = \langle X | R \rangle$ and let \mathcal{R} be a length-reducing RWS for $\hat{X} = X \cup X^{-1}$.
 - **1** Input: a word $w \in \hat{X}^*$.
 - 2 Freely reduce w.
 - If any rewrite rule matches, apply it and go back to 2.
 - Output: the new w.

Note that 3. is not deterministic.

Saying that "Dehn's algorithm solves the word problem" means:

- The output is the empty word ε if and only if $w =_G 1$,
- not depending on which rewrite is applied in 3.

- Let $G = \langle X | R \rangle$ and let \mathcal{R} be a length-reducing RWS for $\hat{X} = X \cup X^{-1}$.
 - **1** Input: a word $w \in \hat{X}^*$.
 - 2 Freely reduce w.
 - If any rewrite rule matches, apply it and go back to 2.
 - Output: the new w.

Note that 3. is not deterministic.

Saying that "Dehn's algorithm solves the word problem" means:

- The output is the empty word ε if and only if $w =_G 1$,
- not depending on which rewrite is applied in 3.

Note:

• For a general RWS, this does not make sense at all.

- Let $G = \langle X | R \rangle$ and let \mathcal{R} be a length-reducing RWS for $\hat{X} = X \cup X^{-1}$.
 - **1** Input: a word $w \in \hat{X}^*$.
 - 2 Freely reduce w.
 - If any rewrite rule matches, apply it and go back to 2.
 - Output: the new w.

Note that 3. is not deterministic.

Saying that "Dehn's algorithm solves the word problem" means:

- The output is the empty word ε if and only if $w =_G 1$,
- not depending on which rewrite is applied in 3.

Note:

- For a general RWS, this does not make sense at all.
- If $w \neq_G 1$, then the output can be different, depending on the choice in 3.

- Let $G = \langle X | R \rangle$ and let \mathcal{R} be a length-reducing RWS for $\hat{X} = X \cup X^{-1}$.
 - **1** Input: a word $w \in \hat{X}^*$.
 - 2 Freely reduce w.
 - If any rewrite rule matches, apply it and go back to 2.
 - Output: the new w.

Note that 3. is not deterministic.

Saying that "Dehn's algorithm solves the word problem" means:

- The output is the empty word ε if and only if $w =_G 1$,
- not depending on which rewrite is applied in 3.

Note:

- For a general RWS, this does not make sense at all.
- If w ≠_G 1, then the output can be different, depending on the choice in 3.
- For a word of length *n*, this terminates after at most *n* steps.

If $ab \in R$ with |a| > |b| and w = xay, then Dehn rewrites this to $xb^{-1}y$.

So *w* is written as a conjugate of a relator times a shorter word.

Lemma

If $G = \langle X | R \rangle$ is small cancellation, then Dehn works and every word $w \in \hat{X}^*$ of length n that is equal to 1 in G is the product of at most n conjugates of a relator. Thus, the Dehn function $\delta(n) \leq n$ for all n.

So *w* is written as a conjugate of a relator times a shorter word.

Lemma

If $G = \langle X | R \rangle$ is small cancellation, then Dehn works and every word $w \in \hat{X}^*$ of length n that is equal to 1 in G is the product of at most n conjugates of a relator. Thus, the Dehn function $\delta(n) \leq n$ for all n.

Definition (Hyperbolic group)

A group is called hyperbolic, if it has a finite presentation with a Dehn function that is bounded by a linear function.

So *w* is written as a conjugate of a relator times a shorter word.

Lemma

If $G = \langle X | R \rangle$ is small cancellation, then Dehn works and every word $w \in \hat{X}^*$ of length n that is equal to 1 in G is the product of at most n conjugates of a relator. Thus, the Dehn function $\delta(n) \leq n$ for all n.

Definition (Hyperbolic group)

A group is called hyperbolic, if it has a finite presentation with a Dehn function that is bounded by a linear function.

We have for a group $G = \langle X | R \rangle$:

small cancellation \implies Dehn's algorithm works \implies hyperbolic

So *w* is written as a conjugate of a relator times a shorter word.

Lemma

If $G = \langle X | R \rangle$ is small cancellation, then Dehn works and every word $w \in \hat{X}^*$ of length n that is equal to 1 in G is the product of at most n conjugates of a relator. Thus, the Dehn function $\delta(n) \leq n$ for all n.

Definition (Hyperbolic group)

A group is called hyperbolic, if it has a finite presentation with a Dehn function that is bounded by a linear function.

We have for a group $G = \langle X | R \rangle$:

small cancellation \implies Dehn's algorithm works \implies hyperbolic \implies has presentation with a working Dehn

So *w* is written as a conjugate of a relator times a shorter word.

Lemma

If $G = \langle X | R \rangle$ is small cancellation, then Dehn works and every word $w \in \hat{X}^*$ of length n that is equal to 1 in G is the product of at most n conjugates of a relator. Thus, the Dehn function $\delta(n) \leq n$ for all n.

Definition (Hyperbolic group)

A group is called hyperbolic, if it has a finite presentation with a Dehn function that is bounded by a linear function.

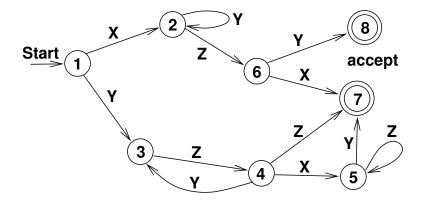
We have for a group $G = \langle X | R \rangle$:

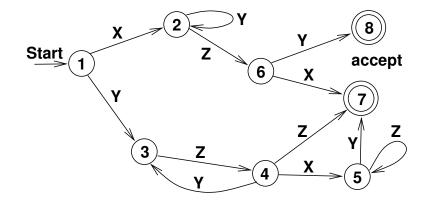
small cancellation \implies Dehn's algorithm works \implies hyperbolic

 \implies has presentation with a working Dehn

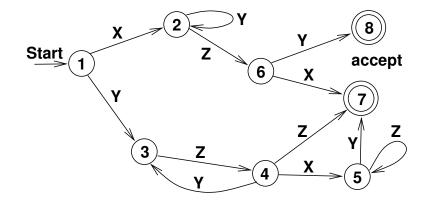
Question: How do we execute Dehn's algorithm efficiently?

Finitely presented groups 4

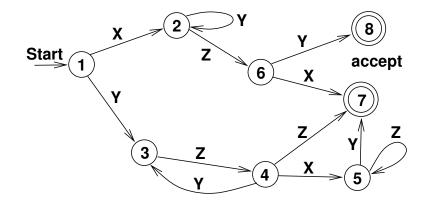




Every path in this digraph has a label.

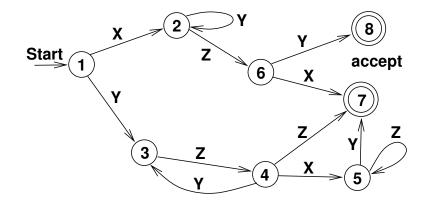


Every path in this digraph has a label. There is one start state and some accept states.



Every path in this digraph has a label. There is one start state and some accept states.

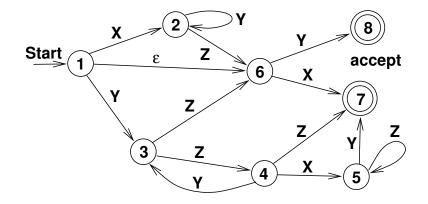
 $\mathcal{L} := \{ \text{labels of paths from start to an accept state} \} \subseteq \{ X, Y, Z \}^*$



Every path in this digraph has a label. There is one start state and some accept states.

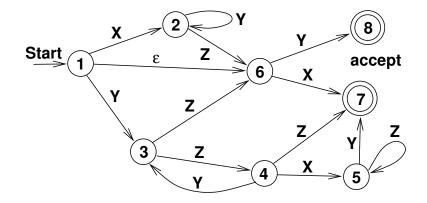
 $\mathcal{L} := \{ \text{labels of paths from start to an accept state} \} \subseteq \{ X, Y, Z \}^*$

This is a regular language: $XY^*Z(Y + X) + YZ(YZ)^*(Z + XZ^*Y)$.



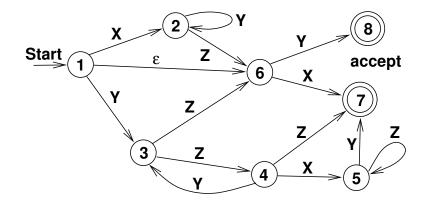
Non-deterministic variants:

• Allow empty (or ε) transitions.



Non-deterministic variants:

- Allow empty (or ε) transitions.
- Allow more than one transition with the same label leaving a state.



Non-deterministic variants:

• Allow empty (or ε) transitions.

• Allow more than one transition with the same label leaving a state.

However: The classes of languages of deterministic and nondeterministic finite state automata are the same.

Max Neunhöffer (University of St Andrews)

Finitely presented groups 4

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite.

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite. The empty prefix is the start state.

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite. The empty prefix is the start state. The complete LHSs are the accept states.

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite. The empty prefix is the start state. The complete LHSs are the accept states.

Transitions:

If XY is a non-accepting state, then there is a transition labelled with "Z" to XYZ if this is still a prefix of a LHS.

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite. The empty prefix is the start state. The complete LHSs are the accept states.

Transitions:

If XY is a non-accepting state, then there is a transition labelled with "Z" to XYZ if this is still a prefix of a LHS.

If XYZ is not a prefix, then there is a transition labelled with "Z" to the longest suffix of XYZ that is a prefix of a LHS.

Assume \mathcal{R} is a RWS and assume for simplicity that no left hand side (LHS) of a rewrite is properly contained in another one.

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite. The empty prefix is the start state. The complete LHSs are the accept states.

Transitions:

If XY is a non-accepting state, then there is a transition labelled with "Z" to XYZ if this is still a prefix of a LHS.

If XYZ is not a prefix, then there is a transition labelled with "Z" to the longest suffix of XYZ that is a prefix of a LHS.

This defines a deterministic FSA which recognises LHSs.

Assume \mathcal{R} is a RWS and assume for simplicity that no left hand side (LHS) of a rewrite is properly contained in another one.

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite. The empty prefix is the start state. The complete LHSs are the accept states.

Transitions:

If XY is a non-accepting state, then there is a transition labelled with "Z" to XYZ if this is still a prefix of a LHS.

If XYZ is not a prefix, then there is a transition labelled with "Z" to the longest suffix of XYZ that is a prefix of a LHS.

This defines a deterministic FSA which recognises LHSs.

 \implies Very fast algorithm to recognise rewrite rules that apply.

Assume \mathcal{R} is a RWS and assume for simplicity that no left hand side (LHS) of a rewrite is properly contained in another one.

Definition (FSA for a RWS)

States:

Define a state for every prefix of a LHS of a rewrite. The empty prefix is the start state. The complete LHSs are the accept states.

Transitions:

If XY is a non-accepting state, then there is a transition labelled with "Z" to XYZ if this is still a prefix of a LHS.

If XYZ is not a prefix, then there is a transition labelled with "Z" to the longest suffix of XYZ that is a prefix of a LHS.

This defines a deterministic FSA which recognises LHSs.

 \implies Very fast algorithm to recognise rewrite rules that apply. \implies Crucial step for Dehn's algorithm.

Definition (2-variable FSA by padding)

Define $p: \hat{X}^* \times \hat{X}^* \to ((\hat{X} \cup \{\$\}) \times (\hat{X} \cup \{\$\}))^*$ by padding the shorter word at the end with \$ symbols:

> p(ABC, DEFGH) = (A, D)(B, E)(C, F)(\$, G)(\$, H)p(ABC, D) = (A, D)(B, \$)(C, \$)

Definition (2-variable FSA by padding)

Define $p: \hat{X}^* \times \hat{X}^* \to ((\hat{X} \cup \{\$\}) \times (\hat{X} \cup \{\$\}))^*$ by padding the shorter word at the end with \$ symbols:

> p(ABC, DEFGH) = (A, D)(B, E)(C, F)(\$, G)(\$, H)p(ABC, D) = (A, D)(B, \$)(C, \$)

A FSA with alphabet $\hat{X} \cup \{\$\}$ accepts a pair $(v, w) \in \hat{X}^* \times \hat{X}^*$ iff there is a path from the start state to an accept state with label p(v, w).

Definition (2-variable FSA by padding)

Define $p: \hat{X}^* \times \hat{X}^* \to ((\hat{X} \cup \{\$\}) \times (\hat{X} \cup \{\$\}))^*$ by padding the shorter word at the end with \$ symbols:

> p(ABC, DEFGH) = (A, D)(B, E)(C, F)(\$, G)(\$, H)p(ABC, D) = (A, D)(B, \$)(C, \$)

A FSA with alphabet $\hat{X} \cup \{\$\}$ accepts a pair $(v, w) \in \hat{X}^* \times \hat{X}^*$ iff there is a path from the start state to an accept state with label p(v, w).

We prepare ourselves for the definition of automatic groups:

Definition (2-variable FSA by padding)

Define $p: \hat{X}^* \times \hat{X}^* \to ((\hat{X} \cup \{\$\}) \times (\hat{X} \cup \{\$\}))^*$ by padding the shorter word at the end with \$ symbols:

> p(ABC, DEFGH) = (A, D)(B, E)(C, F)(\$, G)(\$, H)p(ABC, D) = (A, D)(B, \$)(C, \$)

A FSA with alphabet $\hat{X} \cup \{\$\}$ accepts a pair $(v, w) \in \hat{X}^* \times \hat{X}^*$ iff there is a path from the start state to an accept state with label p(v, w).

We prepare ourselves for the definition of automatic groups:

Definition (Word acceptor)

Let $G = \langle X \mid R \rangle$ and $\hat{X} := X \cup X^{-1}$. A FSA on \hat{X} is called a word acceptor for G, if it accepts at least one word for each element of G.

Definition (2-variable FSA by padding)

Define $p: \hat{X}^* \times \hat{X}^* \to ((\hat{X} \cup \{\$\}) \times (\hat{X} \cup \{\$\}))^*$ by padding the shorter word at the end with \$ symbols:

> p(ABC, DEFGH) = (A, D)(B, E)(C, F)(\$, G)(\$, H)p(ABC, D) = (A, D)(B, \$)(C, \$)

A FSA with alphabet $\hat{X} \cup \{\$\}$ accepts a pair $(v, w) \in \hat{X}^* \times \hat{X}^*$ iff there is a path from the start state to an accept state with label p(v, w).

We prepare ourselves for the definition of automatic groups:

Definition (Word acceptor)

Let $G = \langle X \mid R \rangle$ and $\hat{X} := X \cup X^{-1}$. A FSA on \hat{X} is called a word acceptor for G, if it accepts at least one word for each element of G. It is called a unique word acceptor, if it accepts exactly one word for each element of G.

Definition (Automatic group)

Let *G* be a group that is generated as a monoid by the set \hat{X} . Then *G* is automatic w.r.t. \hat{X} , if there exist FSA *W* and M_x for $x \in \hat{X} \cup \{\varepsilon\}$, s.th.:

• W has alphabet \hat{X} and is a word acceptor for G, and

Definition (Automatic group)

Let G be a group that is generated as a monoid by the set \hat{X} . Then G is automatic w.r.t. \hat{X} , if there exist FSA W and M_x for $x \in \hat{X} \cup \{\varepsilon\}$, s.th.:

- W has alphabet \hat{X} and is a word acceptor for G, and
- M_x has alphabet $\hat{X} \cup \{\}$ and $(v, w) \in \hat{X}^* \times \hat{X}^*$ (where v and w are accepted by W) is accepted by M_x iff $v_x =_G w$.

Definition (Automatic group)

Let G be a group that is generated as a monoid by the set \hat{X} . Then G is automatic w.r.t. \hat{X} , if there exist FSA W and M_x for $x \in \hat{X} \cup \{\varepsilon\}$, s.th.:

- W has alphabet \hat{X} and is a word acceptor for G, and
- M_x has alphabet $\hat{X} \cup \{\}$ and $(v, w) \in \hat{X}^* \times \hat{X}^*$ (where v and w are accepted by W) is accepted by M_X iff $v_X =_G w$.

The automata W and M_x are called an automatic structure for G, the M_x are the multiplier automata.

Definition (Automatic group)

Let G be a group that is generated as a monoid by the set \hat{X} . Then G is automatic w.r.t. \hat{X} , if there exist FSA W and M_x for $x \in \hat{X} \cup \{\varepsilon\}$, s.th.:

- W has alphabet \hat{X} and is a word acceptor for G, and
- M_x has alphabet $\hat{X} \cup \{\}$ and $(v, w) \in \hat{X}^* \times \hat{X}^*$ (where v and w are accepted by W) is accepted by M_X iff $v_X =_G w$.

The automata W and M_x are called an automatic structure for G, the M_x are the multiplier automata.

Theorem (Epstein et al. 1992)

Being automatic is a property of G and not of X.

Definition (Automatic group)

Let G be a group that is generated as a monoid by the set \hat{X} . Then G is automatic w.r.t. \hat{X} , if there exist FSA W and M_x for $x \in \hat{X} \cup \{\varepsilon\}$, s.th.:

- W has alphabet \hat{X} and is a word acceptor for G, and
- M_x has alphabet $\hat{X} \cup \{\}$ and $(v, w) \in \hat{X}^* \times \hat{X}^*$ (where v and w are accepted by W) is accepted by M_x iff $v_x =_G w$.

The automata W and M_x are called an automatic structure for G, the M_x are the multiplier automata.

Theorem (Epstein et al. 1992)

Being automatic is a property of G and not of \hat{X} .

Definition (Shortlex automatic structure)

If W accepts precisely the shortlex minimal words of \hat{X}^* for the elements of G, then $(W, \{M_x\})$ is a shortlex automatic structure.

Max Neunhöffer (University of St Andrews)

Finitely presented aroups 4

Definition (Word differences)

Let $v, w \in \hat{X}^*$ and let v_i be the prefix of v of length i. The word differences of v and w are $D(v, w) := \{v_i^{-1} w_i \mid i \in \mathbb{N}\} \subseteq G$.

Definition (Word differences)

Let $v, w \in \hat{X}^*$ and let v_i be the prefix of v of length i. The word differences of v and w are $D(v, w) := \{v_i^{-1}w_i \mid i \in \mathbb{N}\} \subseteq G$. Note that all D(v, w) are finite sets.

Definition (Word differences)

Let $v, w \in \hat{X}^*$ and let v_i be the prefix of v of length i. The word differences of v and w are $D(v, w) := \{v_i^{-1} w_i \mid i \in \mathbb{N}\} \subseteq G$. Note that all D(v, w) are finite sets.

Theorem

Let $(W, \{M_x\})$ be an automatic structure. The set D(v, w)D :=(v,w) accepted by some M_x is finite.

Let $G = \langle X | R \rangle$ and set $\hat{X} := X \cup X^{-1}$.

Run a shortlex Knuth-Bendix on a RWS coming from the monoid presentation.

- Run a shortlex Knuth-Bendix on a RWS coming from the monoid presentation.
- Stop after some time, even if it has not completed.

- Run a shortlex Knuth-Bendix on a RWS coming from the monoid presentation.
- Stop after some time, even if it has not completed.
- Compute word differences as above, and approximate FSA to recognise them.

- Run a shortlex Knuth-Bendix on a RWS coming from the monoid presentation.
- Stop after some time, even if it has not completed.
- Compute word differences as above, and approximate FSA to recognise them.
- Compute a candidate for the word acceptor W.

- Run a shortlex Knuth-Bendix on a RWS coming from the monoid presentation.
- Stop after some time, even if it has not completed.
- Compute word differences as above, and approximate FSA to recognise them.
- Compute a candidate for the word acceptor W.
- **6** Compute candidates for the multiplier FSA M_x .

- Run a shortlex Knuth-Bendix on a RWS coming from the monoid presentation.
- Stop after some time, even if it has not completed.
- Compute word differences as above, and approximate FSA to recognise them.
- Compute a candidate for the word acceptor W.
- **6** Compute candidates for the multiplier FSA M_x .
- Carry out correctness tests, terminate if OK, otherwise go back.

Let $G = \langle X | R \rangle$ and set $\hat{X} := X \cup X^{-1}$.

- Run a shortlex Knuth-Bendix on a RWS coming from the monoid presentation.
- Stop after some time, even if it has not completed.
- Compute word differences as above, and approximate FSA to recognise them.
- Compute a candidate for the word acceptor W.
- Compute candidates for the multiplier FSA M_x .
- Carry out correctness tests, terminate if OK, otherwise go back.

http://tinyurl.com/MNGAPsess/GAP_FP_9.g

The class of automatic groups is

closed under taking direct products,

The class of automatic groups is

- closed under taking direct products,
- closed under taking free products with finite amalgamated subgroup,

The class of automatic groups is

- closed under taking direct products,
- closed under taking free products with finite amalgamated subgroup,
- closed under taking HNN-extensions with finite conjugated subgroup.

The class of automatic groups is

- closed under taking direct products,
- closed under taking free products with finite amalgamated subgroup,
- closed under taking HNN-extensions with finite conjugated subgroup.

Furthermore:

Hyperbolic groups are automatic.

The class of automatic groups is

- closed under taking direct products,
- closed under taking free products with finite amalgamated subgroup,
- closed under taking HNN-extensions with finite conjugated subgroup.

Furthermore:

- Hyperbolic groups are automatic.
- Free factors of automatic groups are automatic.

The class of automatic groups is

- closed under taking direct products,
- closed under taking free products with finite amalgamated subgroup,
- closed under taking HNN-extensions with finite conjugated subgroup.

Furthermore:

- Hyperbolic groups are automatic.
- Free factors of automatic groups are automatic.
- It has not been proved that direct factors of automatic groups are automatic.

The class of automatic groups is

- closed under taking direct products,
- closed under taking free products with finite amalgamated subgroup,
- closed under taking HNN-extensions with finite conjugated subgroup.

Furthermore:

- Hyperbolic groups are automatic.
- Free factors of automatic groups are automatic.
- It has not been proved that direct factors of automatic groups are automatic.
- If $[G:H] < \infty$, then G is automatic iff H is.

The class of automatic groups is

- closed under taking direct products,
- closed under taking free products with finite amalgamated subgroup,
- closed under taking HNN-extensions with finite conjugated subgroup.

Furthermore:

- Hyperbolic groups are automatic.
- Free factors of automatic groups are automatic.
- It has not been proved that direct factors of automatic groups are automatic.
- If $[G:H] < \infty$, then G is automatic iff H is.

Thus:

Automatic groups are a large class of groups with solvable word problem.

• Polycyclic groups (see Bettina's series)

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, p-Quotient

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, p-Quotient
- Finding matrix representations (see W. Plesken et al.)

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, *p*-Quotient
- Finding matrix representations (see W. Plesken et al.)
- Finding presentations if group is given in another representation

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, *p*-Quotient
- Finding matrix representations (see W. Plesken et al.)
- Finding presentations if group is given in another representation
- Symmetric presentations (see R. Curtis et al.)

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, *p*-Quotient
- Finding matrix representations (see W. Plesken et al.)
- Finding presentations if group is given in another representation
- Symmetric presentations (see R. Curtis et al.)
- Infinite presentations

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, *p*-Quotient
- Finding matrix representations (see W. Plesken et al.)
- Finding presentations if group is given in another representation
- Symmetric presentations (see R. Curtis et al.)
- Infinite presentations
- Laws (e.g. Burnside groups and algorithms for such problems)

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, *p*-Quotient
- Finding matrix representations (see W. Plesken et al.)
- Finding presentations if group is given in another representation
- Symmetric presentations (see R. Curtis et al.)
- Infinite presentations
- Laws (e.g. Burnside groups and algorithms for such problems)
- New developments in algorithmic small cancellation theory (see Richard's talk yesterday)

- Polycyclic groups (see Bettina's series)
- Parallelisation of algorithms
- Quotient algorithms: Nilpotent, Soluble, *p*-Quotient
- Finding matrix representations (see W. Plesken et al.)
- Finding presentations if group is given in another representation
- Symmetric presentations (see R. Curtis et al.)
- Infinite presentations
- Laws (e.g. Burnside groups and algorithms for such problems)
- New developments in algorithmic small cancellation theory (see Richard's talk yesterday)

Derek F. Holt, Bettina Eick, Eamonn A. O'Brien: "Handbook of Computational Group Theory"