
Objects, types and method selection in GAP

Max Neunhöffer

University of St Andrews

1.8.2013

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 1 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime
a static database of methods
“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime
a static database of methods
“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime
a static database of methods
“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime
a static database of methods
“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime
a static database of methods
“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime

a static database of methods
“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime
a static database of methods

“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection The idea

The idea

GAP objects represent mathematical objects.

There are “operations” and “methods”.

Properties of objects (their type)
⇓

Selection of the “right” method

Objects can “learn” during their lifetime
(i.e. change their type)

The methods used change as a consequence!

GAP thus uses:
dynamic typing at runtime
a static database of methods
“just in time” method selection

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 2 / 17

Objects, operations and method selection Types

Types

A type in GAP is a pair:

(a “family”, a bit list of “elementary filters”)

The families form a partition of the set of objects.
one part is for example the PermutationsFamily

An elementary filter is both
a bit in the 2nd component of the type and
the set of all objects, which have that bit set in their type.

A filter is either
an elementary filter or
an and-composition of elementary filters.

Every object o “is” either “in some given filter” or not.
This can be tested with FILTERNAME(o).

Examples: IsSolvable, IsNilpotent, IsAbelian

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 3 / 17

Objects, operations and method selection Types

Types

A type in GAP is a pair:

(a “family”, a bit list of “elementary filters”)

The families form a partition of the set of objects.
one part is for example the PermutationsFamily

An elementary filter is both
a bit in the 2nd component of the type and
the set of all objects, which have that bit set in their type.

A filter is either
an elementary filter or
an and-composition of elementary filters.

Every object o “is” either “in some given filter” or not.
This can be tested with FILTERNAME(o).

Examples: IsSolvable, IsNilpotent, IsAbelian

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 3 / 17

Objects, operations and method selection Types

Types

A type in GAP is a pair:

(a “family”, a bit list of “elementary filters”)

The families form a partition of the set of objects.
one part is for example the PermutationsFamily

An elementary filter is both
a bit in the 2nd component of the type and
the set of all objects, which have that bit set in their type.

A filter is either
an elementary filter or
an and-composition of elementary filters.

Every object o “is” either “in some given filter” or not.
This can be tested with FILTERNAME(o).

Examples: IsSolvable, IsNilpotent, IsAbelian

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 3 / 17

Objects, operations and method selection Types

Types

A type in GAP is a pair:

(a “family”, a bit list of “elementary filters”)

The families form a partition of the set of objects.
one part is for example the PermutationsFamily

An elementary filter is both
a bit in the 2nd component of the type and
the set of all objects, which have that bit set in their type.

A filter is either
an elementary filter or
an and-composition of elementary filters.

Every object o “is” either “in some given filter” or not.
This can be tested with FILTERNAME(o).

Examples: IsSolvable, IsNilpotent, IsAbelian

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 3 / 17

Objects, operations and method selection Types

Types

A type in GAP is a pair:

(a “family”, a bit list of “elementary filters”)

The families form a partition of the set of objects.
one part is for example the PermutationsFamily

An elementary filter is both
a bit in the 2nd component of the type and
the set of all objects, which have that bit set in their type.

A filter is either
an elementary filter or
an and-composition of elementary filters.

Every object o “is” either “in some given filter” or not.
This can be tested with FILTERNAME(o).

Examples: IsSolvable, IsNilpotent, IsAbelian

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 3 / 17

Objects, operations and method selection Types

Types

A type in GAP is a pair:

(a “family”, a bit list of “elementary filters”)

The families form a partition of the set of objects.
one part is for example the PermutationsFamily

An elementary filter is both
a bit in the 2nd component of the type and
the set of all objects, which have that bit set in their type.

A filter is either
an elementary filter or
an and-composition of elementary filters.

Every object o “is” either “in some given filter” or not.
This can be tested with FILTERNAME(o).

Examples: IsSolvable, IsNilpotent, IsAbelian
Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 3 / 17

Objects, operations and method selection Operations and methods

Operations and methods

An operation is a collection of methods.
One declares

the name,
the number of arguments, and
a filter for each argument.

DeclareOperation("Size",[IsGroup]);

One installs one or more methods:
These are functions with the right number of arguments.
One can give further restrictions:

InstallMethod(Size,
[IsGroup and IsPermGroup],
function(p) ... return ...; end);

We call these restrictions “required filters”.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 4 / 17

Objects, operations and method selection Operations and methods

Operations and methods

An operation is a collection of methods.
One declares

the name,
the number of arguments, and
a filter for each argument.

DeclareOperation("Size",[IsGroup]);

One installs one or more methods:
These are functions with the right number of arguments.
One can give further restrictions:

InstallMethod(Size,
[IsGroup and IsPermGroup],
function(p) ... return ...; end);

We call these restrictions “required filters”.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 4 / 17

Objects, operations and method selection Operations and methods

Operations and methods

An operation is a collection of methods.
One declares

the name,
the number of arguments, and
a filter for each argument.

DeclareOperation("Size",[IsGroup]);

One installs one or more methods:
These are functions with the right number of arguments.
One can give further restrictions:

InstallMethod(Size,
[IsGroup and IsPermGroup],
function(p) ... return ...; end);

We call these restrictions “required filters”.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 4 / 17

Objects, operations and method selection Operations and methods

Operations and methods

An operation is a collection of methods.
One declares

the name,
the number of arguments, and
a filter for each argument.

DeclareOperation("Size",[IsGroup]);

One installs one or more methods:
These are functions with the right number of arguments.
One can give further restrictions:

InstallMethod(Size,
[IsGroup and IsPermGroup],
function(p) ... return ...; end);

We call these restrictions “required filters”.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 4 / 17

Objects, operations and method selection Operations and methods

Operations and methods

An operation is a collection of methods.
One declares

the name,
the number of arguments, and
a filter for each argument.

DeclareOperation("Size",[IsGroup]);

One installs one or more methods:
These are functions with the right number of arguments.
One can give further restrictions:

InstallMethod(Size,
[IsGroup and IsPermGroup],
function(p) ... return ...; end);

We call these restrictions “required filters”.
Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 4 / 17

Objects, operations and method selection Operations and methods

The method selection

If somebody calls Size(g) for an object g,

GAP determines the type of g,
considers all methods for Size,
determines, which are applicable (are in all required filters),
and calls the method that

is applicable, and
has the most required filters
(if two or more have the same required filters it takes the one which
was installed later).

This only works efficiently by a very tricky method cache!

More accurately: Each elementary filter has a “rank”.
The method with the highest sum of ranks of the re-
quired filters is chosen.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 5 / 17

Objects, operations and method selection Operations and methods

The method selection

If somebody calls Size(g) for an object g,

GAP determines the type of g,

considers all methods for Size,
determines, which are applicable (are in all required filters),
and calls the method that

is applicable, and
has the most required filters
(if two or more have the same required filters it takes the one which
was installed later).

This only works efficiently by a very tricky method cache!

More accurately: Each elementary filter has a “rank”.
The method with the highest sum of ranks of the re-
quired filters is chosen.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 5 / 17

Objects, operations and method selection Operations and methods

The method selection

If somebody calls Size(g) for an object g,

GAP determines the type of g,
considers all methods for Size,

determines, which are applicable (are in all required filters),
and calls the method that

is applicable, and
has the most required filters
(if two or more have the same required filters it takes the one which
was installed later).

This only works efficiently by a very tricky method cache!

More accurately: Each elementary filter has a “rank”.
The method with the highest sum of ranks of the re-
quired filters is chosen.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 5 / 17

Objects, operations and method selection Operations and methods

The method selection

If somebody calls Size(g) for an object g,

GAP determines the type of g,
considers all methods for Size,
determines, which are applicable (are in all required filters),

and calls the method that
is applicable, and
has the most required filters
(if two or more have the same required filters it takes the one which
was installed later).

This only works efficiently by a very tricky method cache!

More accurately: Each elementary filter has a “rank”.
The method with the highest sum of ranks of the re-
quired filters is chosen.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 5 / 17

Objects, operations and method selection Operations and methods

The method selection

If somebody calls Size(g) for an object g,

GAP determines the type of g,
considers all methods for Size,
determines, which are applicable (are in all required filters),
and calls the method that

is applicable, and
has the most required filters
(if two or more have the same required filters it takes the one which
was installed later).

This only works efficiently by a very tricky method cache!

More accurately: Each elementary filter has a “rank”.
The method with the highest sum of ranks of the re-
quired filters is chosen.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 5 / 17

Objects, operations and method selection Operations and methods

The method selection

If somebody calls Size(g) for an object g,

GAP determines the type of g,
considers all methods for Size,
determines, which are applicable (are in all required filters),
and calls the method that

is applicable, and
has the most required filters
(if two or more have the same required filters it takes the one which
was installed later).

This only works efficiently by a very tricky method cache!

More accurately: Each elementary filter has a “rank”.
The method with the highest sum of ranks of the re-
quired filters is chosen.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 5 / 17

Objects, operations and method selection Operations and methods

The method selection

If somebody calls Size(g) for an object g,

GAP determines the type of g,
considers all methods for Size,
determines, which are applicable (are in all required filters),
and calls the method that

is applicable, and
has the most required filters
(if two or more have the same required filters it takes the one which
was installed later).

This only works efficiently by a very tricky method cache!

More accurately: Each elementary filter has a “rank”.
The method with the highest sum of ranks of the re-
quired filters is chosen.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 5 / 17

Conventions Families

The idea behind families

The families partition the set of all objects.
In contrast, the filters form a hierarchy of sets.

e.g.: PermutationsFamily, CyclotomicsFamily.

For FP groups all elements of one such group form a family.

A collection consists of objects from the same family.

One can form the “CollectionsFamily” of any family,
and the “ElementsFamily” of each CollectionsFamily:

gap> f:=CollectionsFamily(CyclotomicsFamily);;
gap> CyclotomicsFamily=ElementsFamily(f);
true
gap> FamilyObj((1,2,3))=PermutationsFamily;
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 6 / 17

Conventions Families

The idea behind families

The families partition the set of all objects.
In contrast, the filters form a hierarchy of sets.

e.g.: PermutationsFamily, CyclotomicsFamily.

For FP groups all elements of one such group form a family.

A collection consists of objects from the same family.

One can form the “CollectionsFamily” of any family,
and the “ElementsFamily” of each CollectionsFamily:

gap> f:=CollectionsFamily(CyclotomicsFamily);;
gap> CyclotomicsFamily=ElementsFamily(f);
true
gap> FamilyObj((1,2,3))=PermutationsFamily;
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 6 / 17

Conventions Families

The idea behind families

The families partition the set of all objects.
In contrast, the filters form a hierarchy of sets.

e.g.: PermutationsFamily, CyclotomicsFamily.

For FP groups all elements of one such group form a family.

A collection consists of objects from the same family.

One can form the “CollectionsFamily” of any family,
and the “ElementsFamily” of each CollectionsFamily:

gap> f:=CollectionsFamily(CyclotomicsFamily);;
gap> CyclotomicsFamily=ElementsFamily(f);
true
gap> FamilyObj((1,2,3))=PermutationsFamily;
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 6 / 17

Conventions Families

The idea behind families

The families partition the set of all objects.
In contrast, the filters form a hierarchy of sets.

e.g.: PermutationsFamily, CyclotomicsFamily.

For FP groups all elements of one such group form a family.

A collection consists of objects from the same family.

One can form the “CollectionsFamily” of any family,
and the “ElementsFamily” of each CollectionsFamily:

gap> f:=CollectionsFamily(CyclotomicsFamily);;
gap> CyclotomicsFamily=ElementsFamily(f);
true
gap> FamilyObj((1,2,3))=PermutationsFamily;
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 6 / 17

Conventions Families

The idea behind families

The families partition the set of all objects.
In contrast, the filters form a hierarchy of sets.

e.g.: PermutationsFamily, CyclotomicsFamily.

For FP groups all elements of one such group form a family.

A collection consists of objects from the same family.

One can form the “CollectionsFamily” of any family,

and the “ElementsFamily” of each CollectionsFamily:

gap> f:=CollectionsFamily(CyclotomicsFamily);;
gap> CyclotomicsFamily=ElementsFamily(f);
true
gap> FamilyObj((1,2,3))=PermutationsFamily;
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 6 / 17

Conventions Families

The idea behind families

The families partition the set of all objects.
In contrast, the filters form a hierarchy of sets.

e.g.: PermutationsFamily, CyclotomicsFamily.

For FP groups all elements of one such group form a family.

A collection consists of objects from the same family.

One can form the “CollectionsFamily” of any family,
and the “ElementsFamily” of each CollectionsFamily:

gap> f:=CollectionsFamily(CyclotomicsFamily);;
gap> CyclotomicsFamily=ElementsFamily(f);
true
gap> FamilyObj((1,2,3))=PermutationsFamily;
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 6 / 17

Conventions Families

The idea behind families

The families partition the set of all objects.
In contrast, the filters form a hierarchy of sets.

e.g.: PermutationsFamily, CyclotomicsFamily.

For FP groups all elements of one such group form a family.

A collection consists of objects from the same family.

One can form the “CollectionsFamily” of any family,
and the “ElementsFamily” of each CollectionsFamily:

gap> f:=CollectionsFamily(CyclotomicsFamily);;
gap> CyclotomicsFamily=ElementsFamily(f);
true
gap> FamilyObj((1,2,3))=PermutationsFamily;
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 6 / 17

Conventions Categories and representations

Categories and representations

“Categories” and “representations” are nothing but elementary filters
with a bit of philosophy in the background!

Objects in the same category are (mathematically) similar objects.
Objects never change category!

Mathematically similar or equal objects can be represented differently,
then they should lie in different representations.

IsPerm is a category.

IsPerm2Rep and IsPerm4Rep are representations.

Categories usually occur in declarations of operations,
representations usually occur as required filters in method installations.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 7 / 17

Conventions Categories and representations

Categories and representations

“Categories” and “representations” are nothing but elementary filters
with a bit of philosophy in the background!

Objects in the same category are (mathematically) similar objects.
Objects never change category!

Mathematically similar or equal objects can be represented differently,
then they should lie in different representations.

IsPerm is a category.

IsPerm2Rep and IsPerm4Rep are representations.

Categories usually occur in declarations of operations,
representations usually occur as required filters in method installations.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 7 / 17

Conventions Categories and representations

Categories and representations

“Categories” and “representations” are nothing but elementary filters
with a bit of philosophy in the background!

Objects in the same category are (mathematically) similar objects.
Objects never change category!

Mathematically similar or equal objects can be represented differently,
then they should lie in different representations.

IsPerm is a category.

IsPerm2Rep and IsPerm4Rep are representations.

Categories usually occur in declarations of operations,
representations usually occur as required filters in method installations.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 7 / 17

Conventions Categories and representations

Categories and representations

“Categories” and “representations” are nothing but elementary filters
with a bit of philosophy in the background!

Objects in the same category are (mathematically) similar objects.
Objects never change category!

Mathematically similar or equal objects can be represented differently,
then they should lie in different representations.

IsPerm is a category.

IsPerm2Rep and IsPerm4Rep are representations.

Categories usually occur in declarations of operations,
representations usually occur as required filters in method installations.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 7 / 17

Conventions Categories and representations

Categories and representations

“Categories” and “representations” are nothing but elementary filters
with a bit of philosophy in the background!

Objects in the same category are (mathematically) similar objects.
Objects never change category!

Mathematically similar or equal objects can be represented differently,
then they should lie in different representations.

IsPerm is a category.

IsPerm2Rep and IsPerm4Rep are representations.

Categories usually occur in declarations of operations,
representations usually occur as required filters in method installations.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 7 / 17

Conventions Inheritance

Inheritance in GAP

Inheritance works with subfilters.

One declares subfilters and constructs objects that lie in these
additional subfilters.

If one needs special methods, these are installed with the subfilters as
additional requirements.

Hypothetical example:

DeclareCategory("IsGroup",IsObject);
DeclareCategory("IsAbelianGroup",IsGroup);
DeclareOperation("Size",[IsGroup]);
InstallMethod(Size,"for arbitrary groups",

[IsGroup],
function(g) ... end);

InstallMethod(Size,"for abelian groups",
[IsAbelianGroup],
function(a) ... end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 8 / 17

Conventions Inheritance

Inheritance in GAP

Inheritance works with subfilters.

One declares subfilters and constructs objects that lie in these
additional subfilters.

If one needs special methods, these are installed with the subfilters as
additional requirements.

Hypothetical example:

DeclareCategory("IsGroup",IsObject);
DeclareCategory("IsAbelianGroup",IsGroup);
DeclareOperation("Size",[IsGroup]);
InstallMethod(Size,"for arbitrary groups",

[IsGroup],
function(g) ... end);

InstallMethod(Size,"for abelian groups",
[IsAbelianGroup],
function(a) ... end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 8 / 17

Conventions Inheritance

Inheritance in GAP

Inheritance works with subfilters.

One declares subfilters and constructs objects that lie in these
additional subfilters.

If one needs special methods, these are installed with the subfilters as
additional requirements.

Hypothetical example:

DeclareCategory("IsGroup",IsObject);
DeclareCategory("IsAbelianGroup",IsGroup);
DeclareOperation("Size",[IsGroup]);
InstallMethod(Size,"for arbitrary groups",

[IsGroup],
function(g) ... end);

InstallMethod(Size,"for abelian groups",
[IsAbelianGroup],
function(a) ... end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 8 / 17

Conventions Inheritance

Inheritance in GAP

Inheritance works with subfilters.

One declares subfilters and constructs objects that lie in these
additional subfilters.

If one needs special methods, these are installed with the subfilters as
additional requirements.

Hypothetical example:

DeclareCategory("IsGroup",IsObject);
DeclareCategory("IsAbelianGroup",IsGroup);
DeclareOperation("Size",[IsGroup]);
InstallMethod(Size,"for arbitrary groups",

[IsGroup],
function(g) ... end);

InstallMethod(Size,"for abelian groups",
[IsAbelianGroup],
function(a) ... end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 8 / 17

An example The declarations

The declarations

BindGlobal("BlubbsFamily",
NewFamily("BlubbsFamily"));

DeclareCategory("IsBlubb",
IsComponentObjectRep);

DeclareRepresentation("IsBlubbDenseRep",
IsBlubb,["wo","p"]);

BindGlobal("BlubbDenseType",
NewType(BlubbsFamily,IsBlubbDenseRep));

DeclareOperation("Blubb",[IsString,IsInt]);
DeclareOperation("IsShort",[IsBlubb]);
DeclareOperation("NrLetters",[IsBlubb]);

InstallMethod(Blubb,"constructor",
[IsString,IsInt], function(s,i)
local r;
r := rec(wo:=s,p:=i);
return Objectify(BlubbDenseType,r);

end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 9 / 17

An example The declarations

The declarations

BindGlobal("BlubbsFamily",
NewFamily("BlubbsFamily"));

DeclareCategory("IsBlubb",
IsComponentObjectRep);

DeclareRepresentation("IsBlubbDenseRep",
IsBlubb,["wo","p"]);

BindGlobal("BlubbDenseType",
NewType(BlubbsFamily,IsBlubbDenseRep));

DeclareOperation("Blubb",[IsString,IsInt]);
DeclareOperation("IsShort",[IsBlubb]);
DeclareOperation("NrLetters",[IsBlubb]);

InstallMethod(Blubb,"constructor",
[IsString,IsInt], function(s,i)
local r;
r := rec(wo:=s,p:=i);
return Objectify(BlubbDenseType,r);

end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 9 / 17

An example The declarations

The declarations

BindGlobal("BlubbsFamily",
NewFamily("BlubbsFamily"));

DeclareCategory("IsBlubb",
IsComponentObjectRep);

DeclareRepresentation("IsBlubbDenseRep",
IsBlubb,["wo","p"]);

BindGlobal("BlubbDenseType",
NewType(BlubbsFamily,IsBlubbDenseRep));

DeclareOperation("Blubb",[IsString,IsInt]);
DeclareOperation("IsShort",[IsBlubb]);
DeclareOperation("NrLetters",[IsBlubb]);

InstallMethod(Blubb,"constructor",
[IsString,IsInt], function(s,i)
local r;
r := rec(wo:=s,p:=i);
return Objectify(BlubbDenseType,r);

end);
Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 9 / 17

An example The implementations

The implementations

InstallMethod(IsShort,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)

return Length(bl!.wo) <= 5;
end);

InstallMethod(NrLetters,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
return Length(Set(bl!.wo));

end);

InstallMethod(ViewObj,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
Print("<a dense blubb wo=",bl!.wo,

" p=",bl!.p,">");
end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 10 / 17

An example The implementations

The implementations

InstallMethod(IsShort,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)

return Length(bl!.wo) <= 5;
end);

InstallMethod(NrLetters,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
return Length(Set(bl!.wo));

end);

InstallMethod(ViewObj,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
Print("<a dense blubb wo=",bl!.wo,

" p=",bl!.p,">");
end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 10 / 17

An example The implementations

The implementations

InstallMethod(IsShort,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)

return Length(bl!.wo) <= 5;
end);

InstallMethod(NrLetters,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
return Length(Set(bl!.wo));

end);

InstallMethod(ViewObj,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
Print("<a dense blubb wo=",bl!.wo,

" p=",bl!.p,">");
end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 10 / 17

An example Usage examples

Usage

One can now use Blubb-objects as follows:

gap> b := Blubb("abac",17);
<a dense blubb wo=abac p=17>
gap> NrLetters(b);
3
gap> IsShort(b);
true
gap> b!.wo;
"abac"
gap> b!.p;
17

One should install methods for
ViewObj (for the user to see a concise description)
PrintObj (if possible GAP-parsable)
and possibly Display (nicely formatted description for the user).

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 11 / 17

An example Usage examples

Usage

One can now use Blubb-objects as follows:

gap> b := Blubb("abac",17);
<a dense blubb wo=abac p=17>
gap> NrLetters(b);
3
gap> IsShort(b);
true
gap> b!.wo;
"abac"
gap> b!.p;
17

One should install methods for
ViewObj (for the user to see a concise description)
PrintObj (if possible GAP-parsable)
and possibly Display (nicely formatted description for the user).

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 11 / 17

Further niceties Properties

Properties

A Property “XYZ” is realised by:
an elementary filter HasXYZ and
an elementary filter XYZ.

Properties are declared like this:
DeclareProperty("IsShort",IsBlubb);

This automatically defines
an elementary filter HasIsShort,
an elementary filter IsShort,
an operation IsShort,
a method for IsShort for objects in the filter IsBlubb and
HasIsShort, which just checks the type, and
an operation with method SetIsShort.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 12 / 17

Further niceties Properties

Properties

A Property “XYZ” is realised by:
an elementary filter HasXYZ and
an elementary filter XYZ.

Properties are declared like this:
DeclareProperty("IsShort",IsBlubb);

This automatically defines
an elementary filter HasIsShort,
an elementary filter IsShort,
an operation IsShort,
a method for IsShort for objects in the filter IsBlubb and
HasIsShort, which just checks the type, and
an operation with method SetIsShort.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 12 / 17

Further niceties Properties

Properties

A Property “XYZ” is realised by:
an elementary filter HasXYZ and
an elementary filter XYZ.

Properties are declared like this:
DeclareProperty("IsShort",IsBlubb);

This automatically defines
an elementary filter HasIsShort,

an elementary filter IsShort,
an operation IsShort,
a method for IsShort for objects in the filter IsBlubb and
HasIsShort, which just checks the type, and
an operation with method SetIsShort.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 12 / 17

Further niceties Properties

Properties

A Property “XYZ” is realised by:
an elementary filter HasXYZ and
an elementary filter XYZ.

Properties are declared like this:
DeclareProperty("IsShort",IsBlubb);

This automatically defines
an elementary filter HasIsShort,
an elementary filter IsShort,

an operation IsShort,
a method for IsShort for objects in the filter IsBlubb and
HasIsShort, which just checks the type, and
an operation with method SetIsShort.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 12 / 17

Further niceties Properties

Properties

A Property “XYZ” is realised by:
an elementary filter HasXYZ and
an elementary filter XYZ.

Properties are declared like this:
DeclareProperty("IsShort",IsBlubb);

This automatically defines
an elementary filter HasIsShort,
an elementary filter IsShort,
an operation IsShort,

a method for IsShort for objects in the filter IsBlubb and
HasIsShort, which just checks the type, and
an operation with method SetIsShort.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 12 / 17

Further niceties Properties

Properties

A Property “XYZ” is realised by:
an elementary filter HasXYZ and
an elementary filter XYZ.

Properties are declared like this:
DeclareProperty("IsShort",IsBlubb);

This automatically defines
an elementary filter HasIsShort,
an elementary filter IsShort,
an operation IsShort,
a method for IsShort for objects in the filter IsBlubb and
HasIsShort, which just checks the type, and

an operation with method SetIsShort.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 12 / 17

Further niceties Properties

Properties

A Property “XYZ” is realised by:
an elementary filter HasXYZ and
an elementary filter XYZ.

Properties are declared like this:
DeclareProperty("IsShort",IsBlubb);

This automatically defines
an elementary filter HasIsShort,
an elementary filter IsShort,
an operation IsShort,
a method for IsShort for objects in the filter IsBlubb and
HasIsShort, which just checks the type, and
an operation with method SetIsShort.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 12 / 17

Further niceties Attributes

Attributes

DeclareAttribute("NrLetters",IsBlubb);

defines automatically
an elementary filter HasXYZ,
an operation XYZ.

If one inherits from IsComponentObjectRep and
IsAttributeStoringRep, then one also gets:

An operation SetXYZ for [IsBlubb,IsObject] that stores the
2nd argument in the !.XYZ-component and sets HasXYZ.
Every method for XYZ stores its result automatically in that
component and sets HasXYZ.
A very highly ranked method for XYZ for objects in the filter
IsBlubb and HasXYZ that simply returns !.XYZ.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 13 / 17

Further niceties Attributes

Attributes

DeclareAttribute("NrLetters",IsBlubb);

defines automatically
an elementary filter HasXYZ,

an operation XYZ.
If one inherits from IsComponentObjectRep and
IsAttributeStoringRep, then one also gets:

An operation SetXYZ for [IsBlubb,IsObject] that stores the
2nd argument in the !.XYZ-component and sets HasXYZ.
Every method for XYZ stores its result automatically in that
component and sets HasXYZ.
A very highly ranked method for XYZ for objects in the filter
IsBlubb and HasXYZ that simply returns !.XYZ.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 13 / 17

Further niceties Attributes

Attributes

DeclareAttribute("NrLetters",IsBlubb);

defines automatically
an elementary filter HasXYZ,
an operation XYZ.

If one inherits from IsComponentObjectRep and
IsAttributeStoringRep, then one also gets:

An operation SetXYZ for [IsBlubb,IsObject] that stores the
2nd argument in the !.XYZ-component and sets HasXYZ.
Every method for XYZ stores its result automatically in that
component and sets HasXYZ.
A very highly ranked method for XYZ for objects in the filter
IsBlubb and HasXYZ that simply returns !.XYZ.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 13 / 17

Further niceties Attributes

Attributes

DeclareAttribute("NrLetters",IsBlubb);

defines automatically
an elementary filter HasXYZ,
an operation XYZ.

If one inherits from IsComponentObjectRep and
IsAttributeStoringRep, then one also gets:

An operation SetXYZ for [IsBlubb,IsObject] that stores the
2nd argument in the !.XYZ-component and sets HasXYZ.

Every method for XYZ stores its result automatically in that
component and sets HasXYZ.
A very highly ranked method for XYZ for objects in the filter
IsBlubb and HasXYZ that simply returns !.XYZ.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 13 / 17

Further niceties Attributes

Attributes

DeclareAttribute("NrLetters",IsBlubb);

defines automatically
an elementary filter HasXYZ,
an operation XYZ.

If one inherits from IsComponentObjectRep and
IsAttributeStoringRep, then one also gets:

An operation SetXYZ for [IsBlubb,IsObject] that stores the
2nd argument in the !.XYZ-component and sets HasXYZ.
Every method for XYZ stores its result automatically in that
component and sets HasXYZ.

A very highly ranked method for XYZ for objects in the filter
IsBlubb and HasXYZ that simply returns !.XYZ.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 13 / 17

Further niceties Attributes

Attributes

DeclareAttribute("NrLetters",IsBlubb);

defines automatically
an elementary filter HasXYZ,
an operation XYZ.

If one inherits from IsComponentObjectRep and
IsAttributeStoringRep, then one also gets:

An operation SetXYZ for [IsBlubb,IsObject] that stores the
2nd argument in the !.XYZ-component and sets HasXYZ.
Every method for XYZ stores its result automatically in that
component and sets HasXYZ.
A very highly ranked method for XYZ for objects in the filter
IsBlubb and HasXYZ that simply returns !.XYZ.

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 13 / 17

Further niceties Attributes

In our example, we can simply replace

DeclareCategory("IsBlubb",
IsComponentObjectRep);

DeclareOperation("IsShort",[IsBlubb]);
DeclareOperation("NrLetters",[IsBlubb]);

by

DeclareCategory("IsBlubb",
IsAttributeStoringRep);

DeclareProperty("IsShort",IsBlubb);
DeclareAttribute("NrLetters",IsBlubb);

and automatically get caching:

gap> b := Blubb("abac",17);
<a dense blubb wo=abac p=17>
gap> HasNrLetters(b);
false
gap> NrLetters(b);;
gap> HasNrLetters(b);
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 14 / 17

Further niceties Attributes

In our example, we can simply replace

DeclareCategory("IsBlubb",
IsComponentObjectRep);

DeclareOperation("IsShort",[IsBlubb]);
DeclareOperation("NrLetters",[IsBlubb]);

by

DeclareCategory("IsBlubb",
IsAttributeStoringRep);

DeclareProperty("IsShort",IsBlubb);
DeclareAttribute("NrLetters",IsBlubb);

and automatically get caching:

gap> b := Blubb("abac",17);
<a dense blubb wo=abac p=17>
gap> HasNrLetters(b);
false
gap> NrLetters(b);;
gap> HasNrLetters(b);
true

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 14 / 17

Further niceties Debugging

Debugging

If you want to see which methods are available:

gap> ApplicableMethod(NrLetters,[b],3,"all");
#I Searching Method for NrLetters with 1 \

arguments:
#I Total: 2 entries
#I Method 1: ‘‘NrLetters: system getter’’,\

value: 2*SUM_FLAGS+4
#I - 1st argument needs \

["IsAttributeStoringRep",\
"Tester(NrLetters)"]

#I Method 2: ‘‘NrLetters: for dense \
Blubbs’’, value: 3

#I Skipped:
[function(bl) ... end]

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 15 / 17

Further niceties Debugging

The complete example

BindGlobal("BlubbsFamily",
NewFamily("BlubbsFamily"));

DeclareCategory("IsBlubb",
IsAttributeStoringRep);

DeclareRepresentation("IsBlubbDenseRep",
IsBlubb,["wo","p"]);

BindGlobal("BlubbDenseType",
NewType(BlubbsFamily,IsBlubbDenseRep));

DeclareOperation("Blubb",[IsString,IsInt]);
DeclareProperty("IsShort",IsBlubb);
DeclareAttribute("NrLetters",IsBlubb);

InstallMethod(Blubb,"constructor",
[IsString,IsInt], function(s,i)
local r;
r := rec(wo:=s,p:=i);
return Objectify(BlubbDenseType,r);

end);
Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 16 / 17

Further niceties Debugging

The complete example, continued

InstallMethod(IsShort,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)

return Length(bl!.wo) <= 5;
end);

InstallMethod(NrLetters,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
return Length(Set(bl!.wo));

end);

InstallMethod(ViewObj,"for dense Blubbs",
[IsBlubbDenseRep],
function(bl)
Print("<a dense blubb wo=",bl!.wo,

" p=",bl!.p,">");
end);

Max Neunhöffer (University of St Andrews) Objects, types and method selection in GAP 1.8.2013 17 / 17

	Objects, operations and method selection
	The idea
	Types
	Operations and methods

	Conventions
	Families
	Categories and representations
	Inheritance

	An example
	The declarations
	The implementations
	Usage examples

	Further niceties
	Properties
	Attributes
	Debugging

