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Why Exact Combinatorial Search?

Classical NP-hard problems
Travelling salesman
Graph colouring
Boolean satisfiability
...

Many applications
Puzzles
Computational algebra
Scheduling
Vehicle routing
Biochemistry
...

Active area of research in algorithms
BUT: Hard to parallelise
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Search Types

Combinatorial search systematically traverses a search tree by backtracking.

Three types of combinatorial searches:
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Search Types

Combinatorial search systematically traverses a search tree by backtracking.

Three types of combinatorial searches: Enumeration

= all solutions

Examples:
Enumeration Find all k-cliques of the graph
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Search Types

Combinatorial search systematically traverses a search tree by backtracking.

Three types of combinatorial searches: Decision

= first solution

Examples:
Enumeration Find all k-cliques of the graph
Decision Does the graph have a k-clique?
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Search Types

Combinatorial search systematically traverses a search tree by backtracking.

Three types of combinatorial searches: Optimisation

= optimal solution

Examples:
Enumeration Find all k-cliques of the graph
Decision Does the graph have a k-clique?
Optimisation Find a maximum clique of the graph
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Search Types

Combinatorial search systematically traverses a search tree by backtracking.

Three types of combinatorial searches: Optimisation

= optimal solution

Examples:
Enumeration Find all k-cliques of the graph
Decision Does the graph have a k-clique?
Optimisation Find a maximum clique of the graph

Completeness property: Provable optimality/infeasibility of solutions
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Generic Backtracking Search

Every backtracking search can be expressed by suitably defining
a search tree (type node),
a set of facts (type facts) to be gathered during search, and
three functions generate, learn and prune.

Generic API for combinatorial search (Haskell)
class BacktrackingSearch node facts where

generate :: node -> [node]
-- construct search tree on demand by expanding current node
learn :: facts -> node -> facts
-- add solutions (and non-solutions) to current facts
prune :: facts -> node -> Bool
-- skip subtrees that cannot contain solutions

-- generic backtracking search (left-to-right DFS)
search :: (BacktrackingSearch node facts) => facts -> node -> facts
search facts node = if prune facts node

then facts
else foldl search (learn facts node) (generate node)
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Outline

1 Generic Combinatorial Search

2 Why Parallel Combinatorial Search Is Challenging

3 A Generic Framework for Parallel Combinatorial Search
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Why Parallel Combinatorial Search?

Universal goal: Solve bigger instances!

Better algorithms help.

But algorithms’ progress is
unsteady and unpredictable.

Better hardware used to help.

Up to 2005, CPU speed
increased exponentially.

Since 2005, CPU speed has
(almost) stalled.

Parallel HW grows exponentially.

Moore’s law remains intact.
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Why Parallel Combinatorial Search?

Universal goal: Solve bigger instances!

Better algorithms help.

But algorithms’ progress is
unsteady and unpredictable.

Better hardware used to help.

Up to 2005, CPU speed
increased exponentially.

Since 2005, CPU speed has
(almost) stalled.

Parallel HW grows exponentially.

Moore’s law remains intact.

Conclusion: Need scalable parallel combinatorial search!
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Why is Exact Parallel Combinatorial Search Difficult?

Good News: There is lots of parallelism!

Example: Search tree for a problem in finite geometry.
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Why is Exact Parallel Combinatorial Search Difficult?

Problem 1: Search trees are very irregular!

Observation 1: Dynamic scheduling is necessary.
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Why is Exact Parallel Combinatorial Search Difficult?

Problem 2: Subtrees are not independent!
Knowledge sharing and pruning affect the shape of the search tree.

⇒ ⇒

⇒ ⇒

Observation 2: Search order matters.
Random scheduling can lead to very unpredictable performance!
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Outline

1 Generic Combinatorial Search

2 Why Parallel Combinatorial Search Is Challenging

3 A Generic Framework for Parallel Combinatorial Search
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The YewPar Framework for Parallel Combinatorial Search

YewPar search skeleton library

Search tree generation and pruning
Knowledge propagation
Termination

Aside: Algorithmic skeletons are parametric/templated
patterns abstracting parallel coordination.

YewPar distributed task-parallel scheduler
Scheduling policies: ordered, unordered, ...

HPX C++ library (STE||AR Group, LSU)
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YewPar Architecture

Key design principles
Asynchronous distributed work stealing

with configurable policies (including policies preserving heuristics search order)

Asynchronous distributed knowledge propagation
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YewPar Skeleton API

Cliques
Numerical Semigroups

. . .

Search Application = Search Skeleton + Node Generator

Depth-Bounded
Stack-Stealing

Budget
. . .

Enumeration
Decision

Optimisation

Search Skeleton = Parallel Coordination + Search Type

User builds search application by
providing a node generator and
picking a skeleton from the library (or extending the library).

Skeleton determines search type and parallel coordination (work generation
and task scheduling policies)
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YewPar Experimental Evaluation

Benchmark applications:

Enumeration Unbalanced Tree Search

Enumeration of Numerical Semigroups

Decision Existence of k-cliques

Subgraph isomorphism

Existence of spreads in certain finite geometries

Optimisation Maximum clique

Travelling salesperson

0/1 knapsack
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YewPar Scaling: Numerical Semigroups
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Stack-Stealing Budget Ideal

Counting Numerical Semigroups (of genus 50)
Scaling from 1 cluster node (15 workers) to 17 nodes (255 workers)
Budget skeleton scales almost linearly, with little runtime variance
Stack-Stealing skeleton scales, but with huge runtime variance
Depth-Bounded skeleton times out
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YewPar Scaling: Maximum Clique
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Depth-Bounded Stack-Stealing Budget Ideal

Finding a Maximum Clique (DIMACS instance brock800_1)
Scaling from 1 cluster node (15 workers) to 17 nodes (255 workers)
Depth-Bounded scales almost linearly
Stack-Stealing scales
Budget scales worst
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YewPar Scaling: Maximum Clique
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Depth-Bounded Stack-Stealing Budget Ideal

Finding a Maximum Clique (DIMACS instance brock800_2)
Scaling from 1 cluster node (15 workers) to 17 nodes (255 workers)
Depth-Bounded scales almost linearly (occasionally super-linearly)
Stack-Stealing and Budget do not scale well
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YewPar Scaling: Maximum Clique
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Depth-Bounded Stack-Stealing Budget Ideal

Finding a Maximum Clique (DIMACS instance brock800_3)
Scaling from 1 cluster node (15 workers) to 17 nodes (255 workers)
Depth-Bounded scales super-linearly
Stack-Stealing scales
Budget does not scale well
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YewPar Summary

YewPar is a general purpose framework for exact combinatorial search.
High-level parallelism abstractions (skeletons) supporting multiple search types
Suitable for parallelising state-of-the-art sequential search algorithms

YewPar scales.
Good scaling on compute clusters (tested up to 17 nodes, 255 cores)

Scaling depends on the choice of skeleton.
No single best skeleton
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Future Work

More applications

Scaling up to HPC

Symmetry
How to prune branches that are symmetric to already explored branches?

Integration with GAP?
Maybe, if GAP can be linked as a well-behaved library
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